The internal structure of Earth is the solid portion of the Earth, excluding its atmosphere and hydrosphere. The structure consists of an outer silicate solid crust, a highly viscous asthenosphere and solid mantle, a liquid outer core whose flow generates the Earth's magnetic field, and a solid inner core.
Scientific understanding of the internal structure of Earth is based on observations of topography and bathymetry, observations of rock in outcrop, samples brought to the surface from greater depths by volcanoes or volcanic activity, analysis of the seismic waves that pass through Earth, measurements of the gravitational and magnetic fields of Earth, and experiments with crystalline solids at pressures and temperatures characteristic of Earth's deep interior.
Measurements of the force exerted by Earth's gravity can be used to calculate its mass. Astronomers can also calculate Earth's mass by observing the motion of orbiting satellites. Earth's average density can be determined through gravimetric experiments, which have historically involved pendulums. The mass of Earth is about 6e24kg. The average density of the Earth is 5.515g/cm3.
The structure of Earth can be defined in two ways: by mechanical properties such as rheology, or chemically. Mechanically, it can be divided into lithosphere, asthenosphere, mesospheric mantle, outer core, and the inner core. Chemically, Earth can be divided into the crust, upper mantle, lower mantle, outer core, and inner core. The geologic component layers of Earth are at increasing depths below the surface:
Earth's crust and Lithosphere
The Earth's crust ranges from in depth and is the outermost layer. The thin parts are the oceanic crust, which underlie the ocean basins (5–10 km) and is mafic-rich (dense iron-magnesium silicate mineral or igneous rock). The thicker crust is the continental crust, which is less dense and is felsic-rich (igneous rocks rich in elements that form feldspar and quartz). The rocks of the crust fall into two major categories – sial (aluminium silicate) and sima (magnesium silicate).
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Earth's inner core is the innermost geologic layer of planet Earth. It is primarily a solid ball with a radius of about , which is about 20% of Earth's radius or 70% of the Moon's radius. There are no samples of Earth's core accessible for direct measurement, as there are for Earth's mantle. Information about Earth's core mostly comes from analysis of seismic waves and Earth's magnetic field. The inner core is believed to be composed of an iron–nickel alloy with some other elements.
The core–mantle boundary (CMB) of Earth lies between the planet's silicate mantle and its liquid iron–nickel outer core, at a depth of below Earth's surface. The boundary is observed via the discontinuity in seismic wave velocities at that depth due to the differences between the acoustic impedances of the solid mantle and the molten outer core. P-wave velocities are much slower in the outer core than in the deep mantle while S-waves do not exist at all in the liquid portion of the core.
Earth's outer core is a fluid layer about thick, composed of mostly iron and nickel that lies above Earth's solid inner core and below its mantle. The outer core begins approximately beneath Earth's surface at the core-mantle boundary and ends beneath Earth's surface at the inner core boundary. Unlike Earth's solid, inner core, its outer core is liquid. Evidence for a fluid outer core includes seismology which shows that seismic shear-waves are not transmitted through the outer core.
Small-scale dynamos play important roles in modern astrophysics, especially on galactic and extragalactic scales. Owing to dynamo action, purely hydrodynamic Kolmogorov turbulence hardly exists and is often replaced by hydromagnetic turbulence. Understandi ...
This thesis is dedicated to developing innovative methodologies that improve elemental quantification in scanning transmission electron microscopy (STEM) using energy-dispersive X-ray spectroscopy (EDXS). The primary motivation stems from a geochemistry pr ...
The Correlation Electron Cyclotron Emission (CECE) diagnostic at ASDEX Upgrade (AUG) is used to investigate the features of outer core and pedestal (rho(pol) = 0.85-1.0) turbulence across confinement regime transitions. The I-mode confinement regime is a p ...