Summary
A complex adaptive system is a system that is complex in that it is a dynamic network of interactions, but the behavior of the ensemble may not be predictable according to the behavior of the components. It is adaptive in that the individual and collective behavior mutate and self-organize corresponding to the change-initiating micro-event or collection of events. It is a "complex macroscopic collection" of relatively "similar and partially connected micro-structures" formed in order to adapt to the changing environment and increase their survivability as a macro-structure. The Complex Adaptive Systems approach builds on replicator dynamics. The study of complex adaptive systems, a subset of nonlinear dynamical systems, is an interdisciplinary matter that attempts to blend insights from the natural and social sciences to develop system-level models and insights that allow for heterogeneous agents, phase transition, and emergent behavior. The term complex adaptive systems, or complexity science, is often used to describe the loosely organized academic field that has grown up around the study of such systems. Complexity science is not a single theory—it encompasses more than one theoretical framework and is interdisciplinary, seeking the answers to some fundamental questions about living, adaptable, changeable systems. Complex adaptive systems may adopt hard or softer approaches. Hard theories use formal language that is precise, tend to see agents as having tangible properties, and usually see objects in a behavioral system that can be manipulated in some way. Softer theories use natural language and narratives that may be imprecise, and agents are subjects having both tangible and intangible properties. Examples of hard complexity theories include Complex Adaptive Systems (CAS) and Viability Theory, and a class of softer theory is Viable System Theory. Many of the propositional consideration made in hard theory are also of relevance to softer theory. From here on, interest will now center on CAS.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related courses (14)
PHYS-460: Nonlinear dynamics, chaos and complex systems
The course provides students with the tools to approach the study of nonlinear systems and chaotic dynamics. Emphasis is given to concrete examples and numerical applications are carried out during th
CIVIL-534: Computational systems thinking for sustainable eng.
This course integrates systems thinking and network analysis through theory and computing. The objective of this course is to develop expertise in computationally analyzing and modeling complex system
HUM-238: Philosophy of science
Ce cours propose d'identifier et comprendre les débats et problèmes centraux en philosophie des sciences, p.ex. le débat concernant les différents modèles de l'explication scientifique. Evaluer et com
Show more
Related lectures (34)
Self-Organization in Complex Systems
Discusses self-organization in complex systems and emergent properties.
Synchronization in Kuramoto Model
Explores the Kuramoto model for synchronization in phase oscillators and discusses stability criteria and critical coupling values.
Large Scale Stability in Dynamical Systems
Explores large scale stability in dynamical systems and interconnected behavior.
Show more
Related publications (316)
Related concepts (16)
Social network
A social network is a social structure made up of a set of social actors (such as individuals or organizations), sets of dyadic ties, and other social interactions between actors. The social network perspective provides a set of methods for analyzing the structure of whole social entities as well as a variety of theories explaining the patterns observed in these structures. The study of these structures uses social network analysis to identify local and global patterns, locate influential entities, and examine network dynamics.
Edge of chaos
The edge of chaos is a transition space between order and disorder that is hypothesized to exist within a wide variety of systems. This transition zone is a region of bounded instability that engenders a constant dynamic interplay between order and disorder. Even though the idea of the edge of chaos is an abstract one, it has many applications in such fields as ecology, business management, psychology, political science, and other domains of the social sciences.
Self-organization
Self-organization, also called spontaneous order in the social sciences, is a process where some form of overall order arises from local interactions between parts of an initially disordered system. The process can be spontaneous when sufficient energy is available, not needing control by any external agent. It is often triggered by seemingly random fluctuations, amplified by positive feedback. The resulting organization is wholly decentralized, distributed over all the components of the system.
Show more
Related MOOCs (2)
SES Swiss-Energyscope
La transition énergique suisse / Energiewende in der Schweiz
SES Swiss-Energyscope
La transition énergique suisse / Energiewende in der Schweiz