The edge of chaos is a transition space between order and disorder that is hypothesized to exist within a wide variety of systems. This transition zone is a region of bounded instability that engenders a constant dynamic interplay between order and disorder. Even though the idea of the edge of chaos is an abstract one, it has many applications in such fields as ecology, business management, psychology, political science, and other domains of the social sciences. Physicists have shown that adaptation to the edge of chaos occurs in almost all systems with feedback. The phrase edge of chaos was coined in the late 1980s by chaos theory physicist Norman Packard. In the next decade, Packard and mathematician Doyne Farmer co-authored many papers on understanding how self-organization and order emerges at the edge of chaos. One of the original catalysts that led to the idea of the edge of chaos were the experiments with cellular automata done by computer scientist Christopher Langton where a transition phenomenon was discovered. The phrase refers to an area in the range of a variable, λ (lambda), which was varied while examining the behaviour of a cellular automaton (CA). As λ varied, the behaviour of the CA went through a phase transition of behaviours. Langton found a small area conducive to produce CAs capable of universal computation. At around the same time physicist James P. Crutchfield and others used the phrase onset of chaos to describe more or less the same concept. In the sciences in general, the phrase has come to refer to a metaphor that some physical, biological, economic and social systems operate in a region between order and either complete randomness or chaos, where the complexity is maximal. The generality and significance of the idea, however, has since been called into question by Melanie Mitchell and others. The phrase has also been borrowed by the business community and is sometimes used inappropriately and in contexts that are far from the original scope of the meaning of the term.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related courses (1)
PHYS-460: Nonlinear dynamics, chaos and complex systems
The course provides students with the tools to approach the study of nonlinear systems and chaotic dynamics. Emphasis is given to concrete examples and numerical applications are carried out during th
Related lectures (29)
Nonlinear Dynamics and Complex Systems
Covers chaotic behavior in complex systems, with applications in various fields and a historical overview of major developments in chaos theory.
Nonlinear Dynamics and Chaos
Covers bifurcations, long-term dynamics, logistic map, universality, and correspondence between different maps.
Nonlinear Dynamics: Stability and Chaos
Explores fixed point stability, Lyapunov functions, Lotka-Volterra models, and nonlinear dynamics in complex systems.
Show more
Related publications (8)
Related concepts (5)
System
A system is a group of interacting or interrelated elements that act according to a set of rules to form a unified whole. A system, surrounded and influenced by its environment, is described by its boundaries, structure and purpose and is expressed in its functioning. Systems are the subjects of study of systems theory and other systems sciences. Systems have several common properties and characteristics, including structure, function(s), behavior and interconnectivity.
Complex adaptive system
A complex adaptive system is a system that is complex in that it is a dynamic network of interactions, but the behavior of the ensemble may not be predictable according to the behavior of the components. It is adaptive in that the individual and collective behavior mutate and self-organize corresponding to the change-initiating micro-event or collection of events. It is a "complex macroscopic collection" of relatively "similar and partially connected micro-structures" formed in order to adapt to the changing environment and increase their survivability as a macro-structure.
Complex system
A complex system is a system composed of many components which may interact with each other. Examples of complex systems are Earth's global climate, organisms, the human brain, infrastructure such as power grid, transportation or communication systems, complex software and electronic systems, social and economic organizations (like cities), an ecosystem, a living cell, and ultimately the entire universe.
Show more

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.