Summary
In statistics, econometrics, and signal processing, an autoregressive (AR) model is a representation of a type of random process; as such, it is used to describe certain time-varying processes in nature, economics, behavior, etc. The autoregressive model specifies that the output variable depends linearly on its own previous values and on a stochastic term (an imperfectly predictable term); thus the model is in the form of a stochastic difference equation (or recurrence relation which should not be confused with differential equation). Together with the moving-average (MA) model, it is a special case and key component of the more general autoregressive–moving-average (ARMA) and autoregressive integrated moving average (ARIMA) models of time series, which have a more complicated stochastic structure; it is also a special case of the vector autoregressive model (VAR), which consists of a system of more than one interlocking stochastic difference equation in more than one evolving random variable. Contrary to the moving-average (MA) model, the autoregressive model is not always stationary as it may contain a unit root. The notation indicates an autoregressive model of order p. The AR(p) model is defined as where are the parameters of the model, and is white noise. This can be equivalently written using the backshift operator B as so that, moving the summation term to the left side and using polynomial notation, we have An autoregressive model can thus be viewed as the output of an all-pole infinite impulse response filter whose input is white noise. Some parameter constraints are necessary for the model to remain weak-sense stationary. For example, processes in the AR(1) model with are not stationary. More generally, for an AR(p) model to be weak-sense stationary, the roots of the polynomial must lie outside the unit circle, i.e., each (complex) root must satisfy (see pages 89,92 ). In an AR process, a one-time shock affects values of the evolving variable infinitely far into the future. For example, consider the AR(1) model .
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Ontological neighbourhood