In probability theory and statistics, given a stochastic process, the autocovariance is a function that gives the covariance of the process with itself at pairs of time points. Autocovariance is closely related to the autocorrelation of the process in question.
With the usual notation for the expectation operator, if the stochastic process has the mean function , then the autocovariance is given by
where and are two instances in time.
If is a weakly stationary (WSS) process, then the following are true:
for all
and
for all
and
where is the lag time, or the amount of time by which the signal has been shifted.
The autocovariance function of a WSS process is therefore given by:
which is equivalent to
It is common practice in some disciplines (e.g. statistics and time series analysis) to normalize the autocovariance function to get a time-dependent Pearson correlation coefficient. However in other disciplines (e.g. engineering) the normalization is usually dropped and the terms "autocorrelation" and "autocovariance" are used interchangeably.
The definition of the normalized auto-correlation of a stochastic process is
If the function is well-defined, its value must lie in the range , with 1 indicating perfect correlation and −1 indicating perfect anti-correlation.
For a WSS process, the definition is
where
respectively for a WSS process:
The autocovariance of a linearly filtered process
is
Autocovariance can be used to calculate turbulent diffusivity. Turbulence in a flow can cause the fluctuation of velocity in space and time. Thus, we are able to identify turbulence through the statistics of those fluctuations.
Reynolds decomposition is used to define the velocity fluctuations (assume we are now working with 1D problem and is the velocity along direction):
where is the true velocity, and is the expected value of velocity. If we choose a correct , all of the stochastic components of the turbulent velocity will be included in . To determine , a set of velocity measurements that are assembled from points in space, moments in time or repeated experiments is required.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
This course is an introduction to quantitative risk management that covers standard statistical methods, multivariate risk factor models, non-linear dependence structures (copula models), as well as p
This course aims to give an introduction to the application of machine learning to finance. These techniques gained popularity due to the limitations of traditional financial econometrics methods tack
In statistics, econometrics, and signal processing, an autoregressive (AR) model is a representation of a type of random process; as such, it is used to describe certain time-varying processes in nature, economics, behavior, etc. The autoregressive model specifies that the output variable depends linearly on its own previous values and on a stochastic term (an imperfectly predictable term); thus the model is in the form of a stochastic difference equation (or recurrence relation which should not be confused with differential equation).
In signal processing, cross-correlation is a measure of similarity of two series as a function of the displacement of one relative to the other. This is also known as a sliding dot product or sliding inner-product. It is commonly used for searching a long signal for a shorter, known feature. It has applications in pattern recognition, single particle analysis, electron tomography, averaging, cryptanalysis, and neurophysiology. The cross-correlation is similar in nature to the convolution of two functions.
In statistics and econometrics, and in particular in time series analysis, an autoregressive integrated moving average (ARIMA) model is a generalization of an autoregressive moving average (ARMA) model. To better comprehend the data or to forecast upcoming series points, both of these models are fitted to time series data. ARIMA models are applied in some cases where data show evidence of non-stationarity in the sense of mean (but not variance/autocovariance), where an initial differencing step (corresponding to the "integrated" part of the model) can be applied one or more times to eliminate the non-stationarity of the mean function (i.
Explores the stochastic properties and modelling of time series, covering autocovariance, stationarity, spectral density, estimation, forecasting, ARCH models, and multivariate modelling.
,
Is it possible to detect if the sample paths of a stochastic process almost surely admit a finite expansion with respect to some/any basis? The determination is to be made on the basis of a finite collection of discretely/noisily observed sample paths. We ...
This thesis concerns the theory of positive-definite completions and its mutually beneficial connections to the statistics of function-valued or continuously-indexed random processes, better known as functional data analysis. In particular, it dwells upon ...
We consider the problem of comparing several samples of stochastic processes with respect to their second-order structure, and describing the main modes of variation in this second order structure, if present. These tasks can be seen as an Analysis of Vari ...