In astronomy, a planet's elongation is the angular separation between the Sun and the planet, with Earth as the reference point. The greatest elongation of a given inferior planet occurs when this planet's position, in its orbital path around the Sun, is at tangent to the observer on Earth. Since an inferior planet is well within the area of Earth's orbit around the Sun, observation of its elongation should not pose that much a challenge (compared to deep-sky objects, for example). When a planet is at its greatest elongation, it appears farthest from the Sun as viewed from Earth, so its apparition is also best at that point.
When an inferior planet is visible after sunset, it is near its greatest eastern elongation. When an inferior planet is visible before sunrise, it is near its greatest western elongation. The angle of the maximum elongation (east or west) for Mercury is between 18° and 28°, while that for Venus is between 45° and 47°. These values vary because the planetary orbits are elliptical rather than perfectly circular. Another factor contributing to this inconsistency is orbital inclination, in which each planet's orbital plane is slightly tilted relative to a reference plane, like the ecliptic and invariable planes.
Astronomical tables and websites, such as Heavens-Above, forecast when and where the planets reach their next maximum elongations.
Greatest elongations of a planet happen periodically, with a greatest eastern elongation followed by a greatest western elongation, and vice versa. The period depends on the relative angular velocity of Earth and the planet, as seen from the Sun. The time it takes to complete this period is the synodic period of the planet.
Let T be the period (for example the time between two greatest eastern elongations), ω be the relative angular velocity, ωe Earth's angular velocity and ωp the planet's angular velocity. Then
where Te and Tp are Earth's and the planet's years (i.e. periods of revolution around the Sun, called sidereal periods).
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Delves into the dynamics of a rolling cylinder containing granules on an inclined plane, exploring critical angles, oscillation frequencies, and energy dissipation.
The angular diameter, angular size, apparent diameter, or apparent size is an angular distance describing how large a sphere or circle appears from a given point of view. In the vision sciences, it is called the visual angle, and in optics, it is the angular aperture (of a lens). The angular diameter can alternatively be thought of as the angular displacement through which an eye or camera must rotate to look from one side of an apparent circle to the opposite side.
Naked eye, also called bare eye or unaided eye, is the practice of engaging in visual perception unaided by a magnifying, light-collecting optical instrument, such as a telescope or microscope, or eye protection. Vision corrected to normal acuity using corrective lenses is still considered "naked". In astronomy, the naked eye may be used to observe celestial events and objects visible without equipment, such as conjunctions, passing comets, meteor showers, and the brightest asteroids, including 4 Vesta.
The Moon orbits Earth in the prograde direction and completes one revolution relative to the Vernal Equinox and the stars in about 27.32 days (a tropical month and sidereal month) and one revolution relative to the Sun in about 29.53 days (a synodic month). Earth and the Moon orbit about their barycentre (common centre of mass), which lies about from Earth's centre (about 73% of its radius), forming a satellite system called the Earth–Moon system. On average, the distance to the Moon is about from Earth's centre, which corresponds to about 60 Earth radii or 1.
Breaking the up-down symmetry of the tokamak poloidal cross-section can significantly increase the spontaneous rotation due to turbulent momentum transport. In this work, we optimize the shape of flux surfaces with both tilted elongation and tilted triangu ...
The decomposition of a signal on the sphere with the steerable wavelet constructed from the second Gaussian derivative gives access to the orientation, signed-intensity and elongation of the signal’s local features. In the present work, the non-Gaussianity ...