Publication

Optimized up-down asymmetry to drive fast intrinsic rotation in tokamaks

Justin Richard Ball
2018
Journal paper
Abstract

Breaking the up-down symmetry of the tokamak poloidal cross-section can significantly increase the spontaneous rotation due to turbulent momentum transport. In this work, we optimize the shape of flux surfaces with both tilted elongation and tilted triangularity in order to maximize this drive of intrinsic rotation. Nonlinear gyrokinetic simulations demonstrate that adding optimally-tilted triangularity can double the momentum transport of a tilted elliptical shape. This work indicates that tilting the elongation and triangularity in an ITER-like device can reduce the energy transport and drive intrinsic rotation with an Alfven Mach number of roughly 1%. This rotation is four times larger than the rotation expected in ITER and is approximately what is needed to stabilize MHD instabilities. It is shown that this optimal shape can be created using the shaping coils of several present-day experiments.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.