Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
Phonon-assisted luminescence is a key property of defect centers in semiconductors, and can be measured to perform the readout of the information stored in a quantum bit, or to detect temperature variations. The investigation of phonon-assisted luminescenc ...
Spin qubits in silicon and germanium quantum dots are promising platforms for quantum computing, but entangling spin qubits over micrometer distances remains a critical challenge. Current prototypical architectures maximize transversal interactions between ...
Quantum computers are invaluable tools to explore the properties of complex quantum systems. We show that dynamical localization of the quantum sawtooth map, a highly sensitive quantum coherent phenomenon, can be simulated on actual, small-scale quantum pr ...
A single spin in a Josephson junction can reverse the flow of the supercurrent by changing the sign of the superconducting phase difference across it. At mesoscopic length scales, these pi-junctions are employed in various applications, such as finding the ...
We introduce a protocol addressing the conformance test problem, which consists in determining whether a process under test conforms to a reference one. We consider a process to be characterized by the set of end products it produces, which is generated ac ...
Holes in germanium nanowires have emerged as a realistic platform for quantum computing based on spin qubit logic. On top of the large spin–orbit coupling that allows fast qubit operation, nanowire geometry and orientation can be tuned to cancel out charge ...
As quantum processors grow in complexity, attention is moving to the scaling prospects of the entire quantum computing system, including the classical support hardware. Recent results in high-fidelity control of individual spins in silicon, combined with d ...
We propose a scheme for universal quantum computing based on Kramers rare-earth ions. Their nuclear spins in the presence of a Zeeman-split electronic crystal field ground state act as "passive" qubits that store quantum information. The "active" qubits ar ...
This study presents the first in depth characterization of deep cryogenic electrical behavior of a commercial 16 nm CMOS FinFET technology. This technology is well suited for a broad range of applications, including quantum computing, quantum sensing, and ...
It's been a little more than 40 years since researchers first suggested exploiting quantum physics to build more powerful computers. During this time, we have seen the development of many quantum algorithms and significant technological advances to make th ...