Concept

Light effects on circadian rhythm

Summary
Light effects on circadian rhythm are the effects that light has on circadian rhythm. Most animals and other organisms have "built-in clocks" in their brains that regulate the timing of biological processes and daily behavior. These "clocks" are known as circadian rhythms. They allow maintenance of these processes and behaviors relative to the 24-hour day/night cycle in nature. Although these rhythms are maintained by the individual organisms, their length does vary somewhat individually. Therefore, they must, either continually or repeatedly, be reset to synchronize with nature's cycle. In order to maintain synchronization ("entrainment") to 24 hours, external factors must play some role. The human circadian rhythm occurs typically in accordance with nature's cycle. The average activity rhythm cycle is 24.18 hours in adulthood but is shortened as age increases. One of the various factors that influence this entrainment is light exposure to the eyes. When an organism is exposed to a specific wavelength of light stimulus at certain times throughout the day, the hormone melatonin is suppressed, or prevented from being secreted by the pineal gland. Light first passes into a mammal's system through the retina, then takes one of two paths: the light gets collected by rod cells and cone cells and the retinal ganglion cells (RGCs), or it is directly collected by these RGCs. The RGCs use the photopigment melanopsin to absorb the light energy. Specifically, this class of RGCs being discussed is referred to as "intrinsically photosensitive," which just means they are sensitive to light. There are five known types of intrinsically photosensitive retinal ganglion cells (ipRGCs): M1, M2, M3, M4, and M5. Each of these differently ipRGC types have different melanopsin content and photosensitivity. These connect to amacrine cells in the inner plexiform layer of the retina. Ultimately, via this retinohypothalamic tract (RHT) the suprachiasmatic nucleus (SCN) of the hypothalamus receives light information from these ipRGCs.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.