A phase response curve (PRC) illustrates the transient change (phase response) in the cycle period of an oscillation induced by a perturbation as a function of the phase at which it is received. PRCs are used in various fields; examples of biological oscillations are the heartbeat, circadian rhythms, and the regular, repetitive firing observed in some neurons in the absence of noise.
In humans and animals, there is a regulatory system that governs the phase relationship of an organism's internal circadian clock to a regular periodicity in the external environment (usually governed by the solar day). In most organisms, a stable phase relationship is desired, though in some cases the desired phase will vary by season, especially among mammals with seasonal mating habits.
In circadian rhythm research, a PRC illustrates the relationship between a chronobiotic's time of administration (relative to the internal circadian clock) and the magnitude of the treatment's effect on circadian phase. Specifically, a PRC is a graph showing, by convention, time of the subject's endogenous day along the x-axis and the amount of the phase shift (in hours) along the y-axis. Each curve has one peak and one trough in each 24-hour cycle. Relative circadian time is plotted against phase-shift magnitude. The treatment is usually narrowly specified as a set intensity and colour and duration of light exposure to the retina and skin, or a set dose and formulation of melatonin.
These curves are often consulted in the therapeutic setting. Normally, the body's various physiological rhythms will be synchronized within an individual organism (human or animal), usually with respect to a master biological clock. Of particular importance is the sleep–wake cycle. Various sleep disorders and externals stresses (such as jet lag) can interfere with this. People with non-24-hour sleep–wake disorder often experience an inability to maintain a consistent internal clock. Extreme chronotypes usually maintain a consistent clock, but find that their natural clock does not align with the expectations of their social environment.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Life is non-linear. This course introduces dynamical systems as a technique for modelling simple biological processes. The emphasis is on the qualitative and numerical analysis of non-linear dynamical
Circadian rhythm sleep disorders (CRSD), also known as circadian rhythm sleep-wake disorders (CRSWD), are a family of sleep disorders which affect the timing of sleep. CRSDs arise from a persistent pattern of sleep/wake disturbances that can be caused either by dysfunction in one's biological clock system, or by misalignment between one's endogenous oscillator and externally imposed cues. As a result of this mismatch, those affected by circadian rhythm sleep disorders have a tendency to fall asleep at unconventional time points in the day.
Chronobiology is a field of biology that examines timing processes, including periodic (cyclic) phenomena in living organisms, such as their adaptation to solar- and lunar-related rhythms. These cycles are known as biological rhythms. Chronobiology comes from the ancient Greek χρόνος (chrónos, meaning "time"), and biology, which pertains to the study, or science, of life.
In the study of chronobiology, entrainment occurs when rhythmic physiological or behavioral events match their period to that of an environmental oscillation. It is ultimately the interaction between circadian rhythms and the environment. A central example is the entrainment of circadian rhythms to the daily light–dark cycle, which ultimately is determined by the Earth's rotation. Exposure to certain environmental stimuli will cue a phase shift, and abrupt change in the timing of the rhythm.
Explores the health effects of artificial light on living organisms and the principles of fluorescence guided surgery, along with the mechanisms and history of bright light therapy for psychiatric disorders.
Improving indoor lighting conditions at the workplace has the potential to support proper circadian entrainment of hormonal rhythms, sleep, and well-being. We tested the effects of optimized dynamic daylight and electric lighting on circadian phase of mela ...
New insights into the psycho-physiological effects of (day)light on humans. How much do these effects matter in our indoor environment, wherein we spend 90% of our time nowadays? Through this talk, Marilyne Andersen establishes connections between architec ...
2022
, , ,
The synchronization of circadian clock depends on a central pacemaker located in the suprachiasmatic nuclei. However, the potential feedback of peripheral signals on the central clock remains poorly characterized. To explore whether peripheral organ circad ...