Plasma arc welding (PAW) is an arc welding process similar to gas tungsten arc welding (GTAW). The electric arc is formed between an electrode (which is usually but not always made of sintered tungsten) and the workpiece. The key difference from GTAW is that in PAW, the electrode is positioned within the body of the torch, so the plasma arc is separated from the shielding gas envelope. The plasma is then forced through a fine-bore copper nozzle which constricts the arc and the plasma exits the orifice at high velocities (approaching the speed of sound) and a temperature approaching 28,000 °C (50,000 °F) or higher.
Arc plasma is a temporary state of a gas. The gas gets ionized by electric current passing through it and it becomes a conductor of electricity. In ionized state, atoms are broken into electrons (−) and cations (+) and the system contains a mixture of ions, electrons and highly excited atoms. The degree of ionization may be between 1% and greater than 100% (possible with double and triple degrees of ionization). Such states exist as more electrons are pulled from their orbits.
The energy of the plasma jet and thus the temperature depends upon the electrical power employed to create arc plasma. A typical value of temperature obtained in a plasma jet torch is on the order of ), compared to about ) in ordinary electric welding arc. All welding arcs are (partially ionized) plasmas, but the one in plasma arc welding is a constricted arc plasma.
Just as oxy-fuel torches can be used for either welding or cutting, so too can plasma torches.
Plasma arc welding is an arc welding process wherein coalescence is produced by the heat obtained from a constricted arc setup between a tungsten/alloy tungsten electrode and the water-cooled (constricting) nozzle (non-transferred arc) or between a tungsten/alloy tungsten electrode and the job (transferred arc). The process employs two inert gases, one forms the arc plasma and the second shields the arc plasma. Filler metal may or may not be added.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Plasma cutting is a process that cuts through electrically conductive materials by means of an accelerated jet of hot plasma. Typical materials cut with a plasma torch include steel, stainless steel, aluminum, brass and copper, although other conductive metals may be cut as well. Plasma cutting is often used in fabrication shops, automotive repair and restoration, industrial construction, and salvage and scrapping operations.
Oxy-fuel welding (commonly called oxyacetylene welding, oxy welding, or gas welding in the United States) and oxy-fuel cutting are processes that use fuel gases (or liquid fuels such as gasoline or petrol, diesel, bio diesel, kerosene, etc) and oxygen to weld or cut metals. French engineers Edmond Fouché and Charles Picard became the first to develop oxygen-acetylene welding in 1903. Pure oxygen, instead of air, is used to increase the flame temperature to allow localised melting of the workpiece material (e.
Hydrogen embrittlement (HE), also known as hydrogen-assisted cracking or hydrogen-induced cracking (HIC), is a reduction in the ductility of a metal due to absorbed hydrogen. Hydrogen atoms are small and can permeate solid metals. Once absorbed, hydrogen lowers the stress required for cracks in the metal to initiate and propagate, resulting in embrittlement. Hydrogen embrittlement occurs most notably in steels, as well as in iron, nickel, titanium, cobalt, and their alloys.
Ce cours a pour but de donner les fondements de mathématiques nécessaires à l'architecte contemporain évoluant dans une école polytechnique.
Introduction to the assembly of materials by homogeneous or heterogeneous joints (welding, bonding, mechanical assembly). Mechanical and environmental resistance of joints.
To provide an overview of the fundamentals of magnetic confinement (MC) of plasmas for fusion.The different MC configurations are presented, with a description of their operating regimes.The basic ele
Wire-arc directed energy deposition (wire-arc DED), recognized for its ability to produce large-scale parts, has gained considerable attention. However, a critical issue with this method is the high prevalence of internal porosity defects found in the manu ...
Lausanne2023
, , , ,
The plasma design point during stationary phase operation of EU-DEMO has been described extensively in the past, and the assumptions employed for its definition have been supported by various investigations. However, a stationary snapshot is by far not suf ...
ELSEVIER SCIENCE SA2022
, ,
In this work, L-mode analyses are performed in order to assess a modeling framework for the prediction of electron cyclotron resonant heating (ECRH) -assisted current ramp-up phases for JT-60SA tokamak hybrid scenario #4-2. We compare two turbulence transp ...