Concept

Monadic second-order logic

In mathematical logic, monadic second-order logic (MSO) is the fragment of second-order logic where the second-order quantification is limited to quantification over sets. It is particularly important in the logic of graphs, because of Courcelle's theorem, which provides algorithms for evaluating monadic second-order formulas over graphs of bounded treewidth. It is also of fundamental importance in automata theory, where the Büchi–Elgot–Trakhtenbrot theorem gives a logical characterization of the regular languages. Second-order logic allows quantification over predicates. However, MSO is the fragment in which second-order quantification is limited to monadic predicates (predicates having a single argument). This is often described as quantification over "sets" because monadic predicates are equivalent in expressive power to sets (the set of elements for which the predicate is true). Monadic second-order logic comes in two variants. In the variant considered over structures such as graphs and in Courcelle's theorem, the formula may involve non-monadic predicates (in this case the binary edge predicate ), but quantification is restricted to be over monadic predicates only. In the variant considered in automata theory and the Büchi–Elgot–Trakhtenbrot theorem, all predicates, including those in the formula itself, must be monadic, with the exceptions of equality () and ordering () relations. Existential monadic second-order logic (EMSO) is the fragment of MSO in which all quantifiers over sets must be existential quantifiers, outside of any other part of the formula. The first-order quantifiers are not restricted. By analogy to Fagin's theorem, according to which existential (non-monadic) second-order logic captures precisely the descriptive complexity of the complexity class NP, the class of problems that may be expressed in existential monadic second-order logic has been called monadic NP. The restriction to monadic logic makes it possible to prove separations in this logic that remain unproven for non-monadic second-order logic.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.