Summary
Trace gases are gases that are present in small amounts within an environment such as a planet's atmosphere. Trace gases in Earth's atmosphere are gases other than nitrogen (78.1%), oxygen (20.9%), and argon (0.934%) which, in combination, make up 99.934% of its atmosphere (not including water vapor). The abundance of a trace gas can range from a few parts per trillion (ppt) by volume to several hundred parts per million by volume (ppmv). When a trace gas is added into the atmosphere, that process is called a source. There are two possible types of sources - natural or anthropogenic. Natural sources are caused by processes that occur in nature. In contrast, anthropogenic sources are caused by human activity. Some sources of a trace gas are biogenic processes, outgassing from solid Earth, ocean emissions, industrial emissions, and in situ formation. A few examples of biogenic sources include photosynthesis, animal excrements, termites, rice paddies, and wetlands. Volcanoes are the main source for trace gases from solid earth. The global ocean is also a source of several trace gases, in particular sulfur-containing gases. In situ trace gas formation occurs through chemical reactions in the gas-phase. Anthropogenic sources are caused by human related activities such as fossil fuel combustion (e.g. in transportation), fossil fuel mining, biomass burning, and industrial activity. In contrast, a sink is when a trace gas is removed from the atmosphere. Some of the sinks of trace gases are chemical reactions in the atmosphere, mainly with the OH radical, gas-to-particle conversion forming aerosols, wet deposition and dry deposition. Other sinks include microbiological activity in soils. Below is a chart of several trace gases including their abundances, atmospheric lifetimes, sources, and sinks. Trace gases – taken at pressure 1 atm The Intergovernmental Panel on Climate Change (IPCC) states that "no single atmospheric lifetime can be given" for CO2.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related publications (35)
Related concepts (3)
Climate change
In common usage, climate change describes global warming—the ongoing increase in global average temperature—and its effects on Earth's climate system. Climate change in a broader sense also includes previous long-term changes to Earth's climate. The current rise in global average temperature is more rapid than previous changes, and is primarily caused by humans burning fossil fuels. Fossil fuel use, deforestation, and some agricultural and industrial practices increase greenhouse gases, notably carbon dioxide and methane.
Methane
Methane (USˈmɛθeɪn , UKˈmiːθeɪn ) is a chemical compound with the chemical formula (one carbon atom bonded to four hydrogen atoms). It is a group-14 hydride, the simplest alkane, and the main constituent of natural gas. The relative abundance of methane on Earth makes it an economically attractive fuel, although capturing and storing it poses technical challenges due to its gaseous state under normal conditions for temperature and pressure. Naturally occurring methane is found both below ground and under the seafloor and is formed by both geological and biological processes.
Water vapor
Water vapor, water vapour or aqueous vapor is the gaseous phase of water. It is one state of water within the hydrosphere. Water vapor can be produced from the evaporation or boiling of liquid water or from the sublimation of ice. Water vapor is transparent, like most constituents of the atmosphere. Under typical atmospheric conditions, water vapor is continuously generated by evaporation and removed by condensation. It is less dense than most of the other constituents of air and triggers convection currents that can lead to clouds and fog.