Concept# Irreducible fraction

Summary

An irreducible fraction (or fraction in lowest terms, simplest form or reduced fraction) is a fraction in which the numerator and denominator are integers that have no other common divisors than 1 (and −1, when negative numbers are considered). In other words, a fraction ''a''/''b'' is irreducible if and only if a and b are coprime, that is, if a and b have a greatest common divisor of 1. In higher mathematics, "irreducible fraction" may also refer to rational fractions such that the numerator and the denominator are coprime polynomials. Every positive rational number can be represented as an irreducible fraction in exactly one way.
An equivalent definition is sometimes useful: if a and b are integers, then the fraction ''a''/''b'' is irreducible if and only if there is no other equal fraction ''c''/''d'' such that < or < , where means the absolute value of a. (Two fractions ''a'

Official source

This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Related publications

Loading

Related people

Loading

Related units

Loading

Related concepts

Loading

Related courses

Loading

Related lectures

Loading

Related units

No results

Related publications

Related concepts

No results

No results

Related people

No results

Related lectures

Related courses

No results

No results