Summary
The excretory system is a passive biological system that removes excess, unnecessary materials from the body fluids of an organism, so as to help maintain internal chemical homeostasis and prevent damage to the body. The dual function of excretory systems is the elimination of the waste products of metabolism and to drain the body of used up and broken down components in a liquid and gaseous state. In humans and other amniotes (mammals, birds and reptiles) most of these substances leave the body as urine and to some degree exhalation, mammals also expel them through sweating. Only the organs specifically used for the excretion are considered a part of the excretory system. In the narrow sense, the term refers to the urinary system. However, as excretion involves several functions that are only superficially related, it is not usually used in more formal classifications of anatomy or function. As most healthy functioning organs produce metabolic and other wastes, the entire organism depends on the function of the system. Breaking down of one of more of the systems is a serious health condition, for example kidney failure. Urinary system The kidneys are large, bean-shaped organs which are present on each side of the vertebral column in the abdominal cavity. Humans have two kidneys and each kidney is supplied with blood from the renal artery. The kidneys remove from the blood the nitrogenous wastes such as urea, as well as salts and excess water, and excrete them in the form of urine. This is done with the help of millions of nephrons present in the kidney. The filtrated blood is carried away from the kidneys by the renal vein (or kidney vein). The urine from the kidney is collected by the ureter (or excretory tubes), one from each kidney, and is passed to the urinary bladder. The urinary bladder collects and stores the urine until urination. The urine collected in the bladder is passed into the external environment from the body through an opening called the urethra.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related courses (2)
BIO-377: Physiology by systems
Le but est de connaitre et comprendre le fonctionnement des systèmes cardiovasculaire, urinaire, respiratoire, digestif, ainsi que du métabolisme de base et sa régulation afin de déveloper une réflect
BIO-320: Morphology I
Ce cours est une préparation intensive à l'examen d'entrée en 3ème année de Médecine. Les matières enseignées sont la morphologie macroscopique (anatomie) , microscopique (histologie) de la tête, du c
Related lectures (17)
Anatomy of Human Systems
Explores the anatomy of human systems and the structure of the colon.
Urinary System: Introduction, BIO-377 Systems Physiology
Covers the introduction to the urinary system, including equations, urine formation, and kidney anatomy.
Abdominal Viscera and Muscles Anatomy
Covers the anatomy of the abdomen, including muscles, organs, and innervation.
Show more
Related publications (3)

Tubular Compressed Collagen Scaffolds for Ureteral Tissue Engineering in a Flow Bioreactor System

Peter Frey, Jeffrey Alan Hubbell, Hans Mattias Larsson, Elif Vardar, Kalitha Pinnagoda, Mouti Elodie Mouloungui

Ureteral replacement by tissue engineering might become necessary following tissue loss after excessive ureteral trauma, after retroperitoneal cancer, or even after failed reconstructive surgery. This need has driven innovation in the design of novel scaff ...
Mary Ann Liebert, Inc2015

JewelPUMP (TM) by Debiotech S.A.: Insulin Temperature Measurement Study

Adrien De Muralt

For type 1 Diabetes, insulin injection therapy is the most used treatment today, and insulin pumps are surely the most accurate therapeutic strategy. The insulin use temperature has to not exceed 37°C to prevent unwanted degradation and loss of function. T ...
2011

A mouse model for the renal salt-wasting syndrome pseudohypoaldosteronism

Qian Wang, Friedrich Beermann

Aldosterone-dependent epithelial sodium transport in the distal nephron is mediated by the absorption of sodium through the highly selective, amiloride-sensitive epithelial sodium channel (ENaC) made of three homologous subunits (alpha, beta, and gamma). I ...
1997
Related concepts (14)
Arthropod
Arthropods (ˈɑːrθrəpɒd, (gen. ποδός)) are invertebrate animals in the phylum Arthropoda. They possess an exoskeleton with a cuticle made of chitin, often mineralised with calcium carbonate, a segmented body, and paired jointed appendages. In order to keep growing, they must go through stages of moulting, a process by which they shed their exoskeleton to reveal a new one. They are an extremely diverse group, with up to 10 million species. Haemolymph is the analogue of blood for arthropods.
Mollusca
Mollusca is the second-largest phylum of invertebrate animals, after the Arthropoda; members are known as molluscs or mollusks (ˈmɒləsk). Around 85,000 extant species of molluscs are recognized. The number of fossil species is estimated between 60,000 and 100,000 additional species. The proportion of undescribed species is very high. Many taxa remain poorly studied. Molluscs are the largest marine phylum, comprising about 23% of all the named marine organisms. Numerous molluscs also live in freshwater and terrestrial habitats.
Organ (biology)
In a multicellular organism, an organ is a collection of tissues joined in a structural unit to serve a common function. In the hierarchy of life, an organ lies between tissue and an organ system. Tissues are formed from same type cells to act together in a function. Tissues of different types combine to form an organ which has a specific function. The intestinal wall for example is formed by epithelial tissue and smooth muscle tissue.
Show more