Summary
In condensed matter physics, the Laughlin wavefunction is an ansatz, proposed by Robert Laughlin for the ground state of a two-dimensional electron gas placed in a uniform background magnetic field in the presence of a uniform jellium background when the filling factor of the lowest Landau level is where is an odd positive integer. It was constructed to explain the observation of the fractional quantum Hall effect, and predicted the existence of additional states as well as quasiparticle excitations with fractional electric charge , both of which were later experimentally observed. Laughlin received one third of the Nobel Prize in Physics in 1998 for this discovery. Being a trial wavefunction, it is not exact, but qualitatively, it reproduces many features of the exact solution and quantitatively, it has very high overlaps with the exact ground state for small systems. If we ignore the jellium and mutual Coulomb repulsion between the electrons as a zeroth order approximation, we have an infinitely degenerate lowest Landau level (LLL) and with a filling factor of 1/n, we'd expect that all of the electrons would lie in the LLL. Turning on the interactions, we can make the approximation that all of the electrons lie in the LLL. If is the single particle wavefunction of the LLL state with the lowest orbital angular momenta, then the Laughlin ansatz for the multiparticle wavefunction is where position is denoted by in (Gaussian units) and and are coordinates in the xy plane. Here is the reduced Planck's constant, is the electron charge, is the total number of particles, and is the magnetic field, which is perpendicular to the xy plane. The subscripts on z identify the particle. In order for the wavefunction to describe fermions, n must be an odd integer. This forces the wavefunction to be antisymmetric under particle interchange. The angular momentum for this state is . The Laughlin wavefunction is the multiparticle wavefunction for quasiparticles.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.