Concept

Stirling's approximation

In mathematics, Stirling's approximation (or Stirling's formula) is an approximation for factorials. It is a good approximation, leading to accurate results even for small values of . It is named after James Stirling, though a related but less precise result was first stated by Abraham de Moivre. One way of stating the approximation involves the logarithm of the factorial: where the big O notation means that, for all sufficiently large values of , the difference between and will be at most proportional to the logarithm. In computer science applications such as the worst-case lower bound for comparison sorting, it is convenient to use instead the binary logarithm, giving the equivalent form The error term in either base can be expressed more precisely as , corresponding to an approximate formula for the factorial itself, Here the sign means that the two quantities are asymptotic, that is, that their ratio tends to 1 as tends to infinity. The following version of the bound holds for all , rather than only asymptotically: Roughly speaking, the simplest version of Stirling's formula can be quickly obtained by approximating the sum with an integral: The full formula, together with precise estimates of its error, can be derived as follows. Instead of approximating , one considers its natural logarithm, as this is a slowly varying function: The right-hand side of this equation minus is the approximation by the trapezoid rule of the integral and the error in this approximation is given by the Euler–Maclaurin formula: where is a Bernoulli number, and Rm,n is the remainder term in the Euler–Maclaurin formula. Take limits to find that Denote this limit as . Because the remainder Rm,n in the Euler–Maclaurin formula satisfies where big-O notation is used, combining the equations above yields the approximation formula in its logarithmic form: Taking the exponential of both sides and choosing any positive integer , one obtains a formula involving an unknown quantity .

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related courses (3)
MATH-313: Number theory I.b - Analytic number theory
The aim of this course is to present the basic techniques of analytic number theory.
CS-602: Foundation of probabilistic proofs
Probabilistic proof system (eg PCPs and IPs) have had a tremendous impact on the theoretical computer science, and have also found practical uses. They underlie delegation of computation protocols and
ME-608: Methods of asymptotic analysis in mechanics
The introduction to asymptotic analysis provides the basis for constructing many simplified analytical models in mechanics and for testing computations in limiting cases.
Related publications (32)

Higher Order Asymptotics: Applications to Satellite Conjunction and Boundary Problems

Soumaya Elkantassi

Higher-order asymptotics provide accurate approximations for use in parametric statistical modelling. In this thesis, we investigate using higher-order approximations in two-specific settings, with a particular emphasis on the tangent exponential model. Th ...
EPFL2023

Coarse graining and large-N behavior of the d-dimensional N-clock model

Matthias Ruf

We study the asymptotic behavior of the N-clock model, a nearest neighbors ferromagnetic spin model on the d-dimensional cubic epsilon-lattice in which the spin field is constrained to take values in a discretization S-N of the unit circle S-1 consisting o ...
2021
Show more
Related people (1)
Related concepts (12)
Falling and rising factorials
In mathematics, the falling factorial (sometimes called the descending factorial, falling sequential product, or lower factorial) is defined as the polynomial The rising factorial (sometimes called the Pochhammer function, Pochhammer polynomial, ascending factorial, rising sequential product, or upper factorial) is defined as The value of each is taken to be 1 (an empty product) when These symbols are collectively called factorial powers. The Pochhammer symbol, introduced by Leo August Pochhammer, is the notation (x)_n , where n is a non-negative integer.
Time complexity
In computer science, the time complexity is the computational complexity that describes the amount of computer time it takes to run an algorithm. Time complexity is commonly estimated by counting the number of elementary operations performed by the algorithm, supposing that each elementary operation takes a fixed amount of time to perform. Thus, the amount of time taken and the number of elementary operations performed by the algorithm are taken to be related by a constant factor.
Asymptotic expansion
In mathematics, an asymptotic expansion, asymptotic series or Poincaré expansion (after Henri Poincaré) is a formal series of functions which has the property that truncating the series after a finite number of terms provides an approximation to a given function as the argument of the function tends towards a particular, often infinite, point. Investigations by revealed that the divergent part of an asymptotic expansion is latently meaningful, i.e. contains information about the exact value of the expanded function.
Show more

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.