In mathematics, Stirling's approximation (or Stirling's formula) is an approximation for factorials. It is a good approximation, leading to accurate results even for small values of . It is named after James Stirling, though a related but less precise result was first stated by Abraham de Moivre.
One way of stating the approximation involves the logarithm of the factorial:
where the big O notation means that, for all sufficiently large values of , the difference between and will be at most proportional to the logarithm. In computer science applications such as the worst-case lower bound for comparison sorting, it is convenient to use instead the binary logarithm, giving the equivalent form
The error term in either base can be expressed more precisely as , corresponding to an approximate formula for the factorial itself,
Here the sign means that the two quantities are asymptotic, that is, that their ratio tends to 1 as tends to infinity. The following version of the bound holds for all , rather than only asymptotically:
Roughly speaking, the simplest version of Stirling's formula can be quickly obtained by approximating the sum
with an integral:
The full formula, together with precise estimates of its error, can be derived as follows. Instead of approximating , one considers its natural logarithm, as this is a slowly varying function:
The right-hand side of this equation minus
is the approximation by the trapezoid rule of the integral
and the error in this approximation is given by the Euler–Maclaurin formula:
where is a Bernoulli number, and Rm,n is the remainder term in the Euler–Maclaurin formula. Take limits to find that
Denote this limit as . Because the remainder Rm,n in the Euler–Maclaurin formula satisfies
where big-O notation is used, combining the equations above yields the approximation formula in its logarithmic form:
Taking the exponential of both sides and choosing any positive integer , one obtains a formula involving an unknown quantity .
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Introduction à la physique des plasmas destinée à donner une vue globale des propriétés essentielles et uniques d'un plasma et à présenter les approches couramment utilisées pour modéliser son comport
In mathematics, the falling factorial (sometimes called the descending factorial, falling sequential product, or lower factorial) is defined as the polynomial The rising factorial (sometimes called the Pochhammer function, Pochhammer polynomial, ascending factorial, rising sequential product, or upper factorial) is defined as The value of each is taken to be 1 (an empty product) when These symbols are collectively called factorial powers. The Pochhammer symbol, introduced by Leo August Pochhammer, is the notation (x)_n , where n is a non-negative integer.
In computer science, the time complexity is the computational complexity that describes the amount of computer time it takes to run an algorithm. Time complexity is commonly estimated by counting the number of elementary operations performed by the algorithm, supposing that each elementary operation takes a fixed amount of time to perform. Thus, the amount of time taken and the number of elementary operations performed by the algorithm are taken to be related by a constant factor.
In mathematics, an asymptotic expansion, asymptotic series or Poincaré expansion (after Henri Poincaré) is a formal series of functions which has the property that truncating the series after a finite number of terms provides an approximation to a given function as the argument of the function tends towards a particular, often infinite, point. Investigations by revealed that the divergent part of an asymptotic expansion is latently meaningful, i.e. contains information about the exact value of the expanded function.
Higher-order asymptotics provide accurate approximations for use in parametric statistical modelling. In this thesis, we investigate using higher-order approximations in two-specific settings, with a particular emphasis on the tangent exponential model. Th ...
We study generalization properties of random features (RF) regression in high dimensions optimized by stochastic gradient descent (SGD) in under-/overparameterized regime. In this work, we derive precise non-asymptotic error bounds of RF regression under b ...
We study the asymptotic behavior of the N-clock model, a nearest neighbors ferromagnetic spin model on the d-dimensional cubic epsilon-lattice in which the spin field is constrained to take values in a discretization S-N of the unit circle S-1 consisting o ...