Complete Boolean algebraIn mathematics, a complete Boolean algebra is a Boolean algebra in which every subset has a supremum (least upper bound). Complete Boolean algebras are used to construct Boolean-valued models of set theory in the theory of forcing. Every Boolean algebra A has an essentially unique completion, which is a complete Boolean algebra containing A such that every element is the supremum of some subset of A. As a partially ordered set, this completion of A is the Dedekind–MacNeille completion.
First uncountable ordinalIn mathematics, the first uncountable ordinal, traditionally denoted by or sometimes by , is the smallest ordinal number that, considered as a set, is uncountable. It is the supremum (least upper bound) of all countable ordinals. When considered as a set, the elements of are the countable ordinals (including finite ordinals), of which there are uncountably many. Like any ordinal number (in von Neumann's approach), is a well-ordered set, with set membership serving as the order relation. is a limit ordinal, i.
Easton's theoremIn set theory, Easton's theorem is a result on the possible cardinal numbers of powersets. (extending a result of Robert M. Solovay) showed via forcing that the only constraints on permissible values for 2κ when κ is a regular cardinal are (where cf(α) is the cofinality of α) and If G is a class function whose domain consists of ordinals and whose range consists of ordinals such that G is non-decreasing, the cofinality of is greater than for each α in the domain of G, and is regular for each α in the domain of G, then there is a model of ZFC such that for each in the domain of G.
Axiom schemaIn mathematical logic, an axiom schema (plural: axiom schemata or axiom schemas) generalizes the notion of axiom. An axiom schema is a formula in the metalanguage of an axiomatic system, in which one or more schematic variables appear. These variables, which are metalinguistic constructs, stand for any term or subformula of the system, which may or may not be required to satisfy certain conditions. Often, such conditions require that certain variables be free, or that certain variables not appear in the subformula or term.
Kripke semanticsKripke semantics (also known as relational semantics or frame semantics, and often confused with possible world semantics) is a formal semantics for non-classical logic systems created in the late 1950s and early 1960s by Saul Kripke and André Joyal. It was first conceived for modal logics, and later adapted to intuitionistic logic and other non-classical systems. The development of Kripke semantics was a breakthrough in the theory of non-classical logics, because the model theory of such logics was almost non-existent before Kripke (algebraic semantics existed, but were considered 'syntax in disguise').
König's theorem (set theory)In set theory, König's theorem states that if the axiom of choice holds, I is a set, and are cardinal numbers for every i in I, and for every i in I, then The sum here is the cardinality of the disjoint union of the sets mi, and the product is the cardinality of the Cartesian product. However, without the use of the axiom of choice, the sum and the product cannot be defined as cardinal numbers, and the meaning of the inequality sign would need to be clarified.
Filter (mathematics)In mathematics, a filter or order filter is a special subset of a partially ordered set (poset), describing "large" or "eventual" elements. Filters appear in order and lattice theory, but also topology, whence they originate. The notion dual to a filter is an order ideal. Special cases of filters include ultrafilters, which are filters that cannot be enlarged, and describe nonconstructive techniques in mathematical logic. Filters on sets were introduced by Henri Cartan in 1937.
Independence (mathematical logic)In mathematical logic, independence is the unprovability of a sentence from other sentences. A sentence σ is independent of a given first-order theory T if T neither proves nor refutes σ; that is, it is impossible to prove σ from T, and it is also impossible to prove from T that σ is false. Sometimes, σ is said (synonymously) to be undecidable from T; this is not the same meaning of "decidability" as in a decision problem. A theory T is independent if each axiom in T is not provable from the remaining axioms in T.
Absoluteness (logic)In mathematical logic, a formula is said to be absolute to some class of structures (also called models), if it has the same truth value in each of the members of that class. One can also speak of absoluteness of a formula between two structures, if it is absolute to some class which contains both of them.. Theorems about absoluteness typically establish relationships between the absoluteness of formulas and their syntactic form. There are two weaker forms of partial absoluteness.
Suslin's problemIn mathematics, Suslin's problem is a question about totally ordered sets posed by and published posthumously. It has been shown to be independent of the standard axiomatic system of set theory known as ZFC; showed that the statement can neither be proven nor disproven from those axioms, assuming ZF is consistent. (Suslin is also sometimes written with the French transliteration as Souslin, from the Cyrillic Суслин.