Complete Boolean algebraIn mathematics, a complete Boolean algebra is a Boolean algebra in which every subset has a supremum (least upper bound). Complete Boolean algebras are used to construct Boolean-valued models of set theory in the theory of forcing. Every Boolean algebra A has an essentially unique completion, which is a complete Boolean algebra containing A such that every element is the supremum of some subset of A. As a partially ordered set, this completion of A is the Dedekind–MacNeille completion.
Premier ordinal non dénombrableEn mathématiques, le premier ordinal non dénombrable, noté ω1 ou parfois Ω, est le plus petit ordinal non dénombrable ; c'est aussi l'ensemble des ordinaux finis ou infinis dénombrables. En d'autres termes, c'est l'ordinal de Hartogs de tout ensemble infini dénombrable. ω1 est le supremum de tous les ordinaux au plus dénombrables ; ce sont ses éléments. Comme tout ordinal (dans l'approche de von Neumann), ω1 est un ensemble bien ordonné, la relation d'ordre étant la relation d'appartenance : ∈.
Théorème d'EastonEn théorie des ensembles, le théorème d'Easton est un résultat décrivant les nombres cardinaux possibles pour des ensembles de parties. (améliorant un résultat de Robert Solovay) montra par forcing que les seules contraintes sur les valeurs possibles de 2κ, où κ est un cardinal régulier, sont celles découlant du théorème de Cantor et du théorème de König : , et (où cf(α) est la cofinalité de α).
Schéma d'axiomesEn logique mathématique, la notion de schéma d’axiomes généralise celle d'axiome. Un schéma d’axiomes est une formule exprimée dans le métalangage d'un système axiomatique, dans lequel une ou plusieurs métavariables apparaissent. Ces variables, qui sont des constructions métalinguistiques, représentent n'importe quel terme ou sous-formule du système logique, qui peut être (ou ne pas être) tenu de satisfaire certaines conditions. Souvent, de telles conditions exigent que certaines des variables soient libres, ou que certaines variables n'apparaissent pas dans la sous-formule ou le terme.
Sémantique de KripkeEn logique mathématique, la sémantique de Kripke est une sémantique formelle utilisée pour les logiques non-classiques comme la logique intuitionniste et certaines logiques modales. Elle a été développée à la fin des années 1950 et début des années 1960 par Saul Kripke et est fondée sur la théorie des mondes possibles. Un cadre de Kripke est un couple (W, R), où W est un ensemble de mondes appelés parfois mondes possibles et où R est une relation binaire sur W. L'ensemble W s'appelle parfois l'univers des mondes possibles.
Théorème de König (théorie des ensembles)In set theory, König's theorem states that if the axiom of choice holds, I is a set, and are cardinal numbers for every i in I, and for every i in I, then The sum here is the cardinality of the disjoint union of the sets mi, and the product is the cardinality of the Cartesian product. However, without the use of the axiom of choice, the sum and the product cannot be defined as cardinal numbers, and the meaning of the inequality sign would need to be clarified.
Filtre (mathématiques)En mathématiques, et plus particulièrement en topologie générale, un filtre est une structure définie sur un ensemble, et permettant d'étendre la notion de limite aux situations les plus générales. La théorie des filtres a été inventée, en 1937, par Henri Cartan et utilisée par Bourbaki. Les filtres ont permis en particulier une démonstration élégante du théorème de Tychonov.
Indépendance (logique mathématique)En logique mathématique, l'indépendance se réfère à la non-prouvabilité d'une proposition relativement à d'autres propositions. Une proposition σ est indépendante d'une théorie de premier ordre donnée T, si T ne prouve pas σ; à savoir, il est impossible de prouver σ à partir de T, et il est également impossible de prouver à partir de T que σ est faux. Parfois, σ est dit être indécidable de T; à ne pas confondre à la « décidabilité », du problème de décision.
Absoluteness (logic)In mathematical logic, a formula is said to be absolute to some class of structures (also called models), if it has the same truth value in each of the members of that class. One can also speak of absoluteness of a formula between two structures, if it is absolute to some class which contains both of them.. Theorems about absoluteness typically establish relationships between the absoluteness of formulas and their syntactic form. There are two weaker forms of partial absoluteness.
Problème de SouslinEn mathématiques, le problème de Souslin est une question sur les ensembles totalement ordonnés, posée par Mikhaïl Souslin dans un article publié en 1920 peu après sa mort. Étant donné un ensemble non vide S totalement ordonné tel que : S n'a pas de plus grand ni de plus petit élément ; l'ordre sur S est dense (c'est-à-dire qu'entre deux éléments distincts de S il y en a toujours au moins un troisième) ; toute partie non vide majorée admet une borne supérieure, et toute partie non vide minorée admet une borne inférieure ; toute famille d'intervalles ouverts non vides de S deux à deux disjoints est dénombrable (c'est la condition de chaîne dénombrable), existe-t-il nécessairement un isomorphisme pour l'ordre entre S et la droite réelle ? La réponse par l'affirmative constitue ce qui est connu comme l'hypothèse de Souslin.