Related concepts (39)
Expansion of the universe
The expansion of the universe is the increase in distance between gravitationally unbound parts of the observable universe with time. It is an intrinsic expansion; the universe does not expand "into" anything and does not require space to exist "outside" it. To any observer in the universe, it appears that all but the nearest galaxies (which are bound by gravity) recede at speeds that are proportional to their distance from the observer, on average.
Gravitational singularity
A gravitational singularity, spacetime singularity or simply singularity is a condition in which gravity is predicted to be so intense that spacetime itself would break down catastrophically. As such, a singularity is by definition no longer part of the regular spacetime and cannot be determined by "where" or "when". Gravitational singularities exist at a junction between general relativity and quantum mechanics; therefore, the properties of the singularity cannot be described without an established theory of quantum gravity.
Lee Smolin
Lee Smolin (ˈsmoʊlɪn; born June 6, 1955) is an American theoretical physicist, a faculty member at the Perimeter Institute for Theoretical Physics, an adjunct professor of physics at the University of Waterloo and a member of the graduate faculty of the philosophy department at the University of Toronto. Smolin's 2006 book The Trouble with Physics criticized string theory as a viable scientific theory. He has made contributions to quantum gravity theory, in particular the approach known as loop quantum gravity.
No-hair theorem
The no-hair theorem states that all stationary black hole solutions of the Einstein–Maxwell equations of gravitation and electromagnetism in general relativity can be completely characterized by only three independent externally observable classical parameters: mass, electric charge, and angular momentum.
Spin foam
In physics, the topological structure of spinfoam or spin foam consists of two-dimensional faces representing a configuration required by functional integration to obtain a Feynman's path integral description of quantum gravity. These structures are employed in loop quantum gravity as a version of quantum foam. Loop quantum gravity The covariant formulation of loop quantum gravity provides the best formulation of the dynamics of the theory of quantum gravity – a quantum field theory where the invariance under diffeomorphisms of general relativity applies.
Equivalence principle
In the theory of general relativity, the equivalence principle is the equivalence of gravitational and inertial mass, and Albert Einstein's observation that the gravitational "force" as experienced locally while standing on a massive body (such as the Earth) is the same as the pseudo-force experienced by an observer in a non-inertial (accelerated) frame of reference. History of gravitational theory Something like the equivalence principle emerged in the early 17th century, when Galileo expressed experimentally that the acceleration of a test mass due to gravitation is independent of the amount of mass being accelerated.
Big Crunch
The Big Crunch is a hypothetical scenario for the ultimate fate of the universe, in which the expansion of the universe eventually reverses and the universe recollapses, ultimately causing the cosmic scale factor to reach zero, an event potentially followed by a reformation of the universe starting with another Big Bang. The vast majority of evidence indicates that this hypothesis is not correct. Instead, astronomical observations show that the expansion of the universe is accelerating rather than being slowed by gravity, suggesting that the universe is far more likely to end in heat death.
Causal dynamical triangulation
Causal dynamical triangulation (abbreviated as CDT), theorized by Renate Loll, Jan Ambjørn and Jerzy Jurkiewicz, is an approach to quantum gravity that, like loop quantum gravity, is background independent. This means that it does not assume any pre-existing arena (dimensional space) but, rather, attempts to show how the spacetime fabric itself evolves. There is evidence that, at large scales, CDT approximates the familiar 4-dimensional spacetime but shows spacetime to be 2-dimensional near the Planck scale, and reveals a fractal structure on slices of constant time.
Unruh effect
The Unruh effect (also known as the Fulling–Davies–Unruh effect) is a kinematic prediction of quantum field theory that a uniformly accelerating observer will observe a thermal bath, like blackbody radiation, whereas an inertial observer would observe none. In other words, the background appears to be warm from an accelerating reference frame; in layperson's terms, an accelerating thermometer (like one being waved around) in empty space, removing any other contribution to its temperature, will record a non-zero temperature, just from its acceleration.
Black hole information paradox
The black hole information paradox is a puzzle that appears when the predictions of quantum mechanics and general relativity are combined. The theory of general relativity predicts the existence of black holes that are regions of spacetime from which nothing — not even light — can escape. In the 1970s, Stephen Hawking applied the semi-classical approach of quantum field theory in curved spacetime to such systems and found that an isolated black hole would emit a form of radiation called Hawking radiation.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.