In electronics, through-hole technology (also spelled "thru-hole") is a manufacturing scheme in which leads on the components are inserted through holes drilled in printed circuit boards (PCB) and soldered to pads on the opposite side, either by manual assembly (hand placement) or by the use of automated insertion mount machines.
Through-hole technology almost completely replaced earlier electronics assembly techniques such as point-to-point construction. From the second generation of computers in the 1950s until surface-mount technology (SMT) became popular in the mid 1980s, every component on a typical PCB was a through-hole component. PCBs initially had tracks printed on one side only, later both sides, then multi-layer boards were in use. Through holes became plated-through holes (PTH) in order for the components to make contact with the required conductive layers. Plated-through holes are no longer required with SMT boards for making the component connections, but are still used for making interconnections between the layers and in this role are more usually called vias.
Components with wire leads are generally used on through-hole boards. Axial leads protrude from each end of a typically cylindrical or elongated box-shaped component, on the geometrical axis of symmetry. Axial-leaded components resemble wire jumpers in shape, and can be used to span short distances on a board, or even otherwise unsupported through an open space in point-to-point wiring. Axial components do not protrude much above the surface of a board, producing a low-profile or flat configuration when placed "lying down" or parallel to the board.
Radial leads project more or less in parallel from the same surface or aspect of a component package, rather than from opposite ends of the package. Originally, radial leads were defined as more-or-less following a radius of a cylindrical component (such as a ceramic disk capacitor). Over time, this definition was generalized in contrast to axial leads, and took on its current form.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
A capacitor is a device that stores electrical energy in an electric field by accumulating electric charges on two closely spaced surfaces that are insulated from each other. It is a passive electronic component with two terminals. The effect of a capacitor is known as capacitance. While some capacitance exists between any two electrical conductors in proximity in a circuit, a capacitor is a component designed to add capacitance to a circuit.
A breadboard, solderless breadboard, or protoboard is a construction base used to build semi-permanent prototypes of electronic circuits. Unlike a perfboard or stripboard, breadboards do not require soldering or destruction of tracks and are hence reusable. For this reason, breadboards are also popular with students and in technological education. A variety of electronic systems may be prototyped by using breadboards, from small analog and digital circuits to complete central processing units (CPUs).
In electronics, point-to-point construction is a non-automated technique for constructing circuits which was widely used before the use of printed circuit boards (PCBs) and automated assembly gradually became widespread following their introduction in the 1950s. Circuits using thermionic valves (vacuum tubes) were relatively large, relatively simple (the number of large, hot, expensive devices which needed replacing was minimised), and used large sockets, all of which made the PCB less obviously advantageous than with later complex semiconductor circuits.
Layered hybrid organic-inorganic perovskite (LHOIP) materials are an emerging class of semiconductors endorsed as a more stable alternative compared to the more widely investigated 3D hybrid organic-inorganic halide perovskites (HOIP). Consisting of altern ...
Monocrystalline 1.7 eV Mg0.13Cd0.87Te/MgxCd1-xTe (x > 0.13) double heterostructure (DH) solar cells with varying Mg compositions in the barrier layers are grown by molecular beam epitaxy. A Mg0.13Cd0.87Te/Mg0.37Cd0.63Te DH solar cell featuring abrupt inter ...
AIP Publishing2022
,
In this contribution, we present a miniature antenna placed in a leg bracelet for body worn applications. It operates in both the 820-960 MHz and the 1.7-2.1 GHz bands. The radiating element, based on an inverted-F antenna, occupies a 37 mm × 37 mm area an ...