Concept

Homeomorphism group

In mathematics, particularly topology, the homeomorphism group of a topological space is the group consisting of all homeomorphisms from the space to itself with function composition as the group operation. Homeomorphism groups are very important in the theory of topological spaces and in general are examples of automorphism groups. Homeomorphism groups are topological invariants in the sense that the homeomorphism groups of homeomorphic topological spaces are isomorphic as groups. There is a natural group action of the homeomorphism group of a space on that space. Let be a topological space and denote the homeomorphism group of by . The action is defined as follows: This is a group action since for all , where denotes the group action, and the identity element of (which is the identity function on ) sends points to themselves. If this action is transitive, then the space is said to be homogeneous. As with other sets of maps between topological spaces, the homeomorphism group can be given a topology, such as the compact-open topology. In the case of regular, locally compact spaces the group multiplication is then continuous. If the space is compact and Hausdorff, the inversion is continuous as well and becomes a topological group. If is Hausdorff, locally compact and locally connected this holds as well. However there are locally compact separable metric spaces for which the inversion map is not continuous and therefore not a topological group. In the category of topological spaces with homeomorphisms, group objects are exactly homeomorphism groups. Mapping class group In geometric topology especially, one considers the quotient group obtained by quotienting out by isotopy, called the mapping class group: The MCG can also be interpreted as the 0th homotopy group, . This yields the short exact sequence: In some applications, particularly surfaces, the homeomorphism group is studied via this short exact sequence, and by first studying the mapping class group and group of isotopically trivial homeomorphisms, and then (at times) the extension.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related courses (2)
MATH-410: Riemann surfaces
This course is an introduction to the theory of Riemann surfaces. Riemann surfaces naturally appear is mathematics in many different ways: as a result of analytic continuation, as quotients of complex
MATH-225: Topology II - fundamental groups
On étudie des notions de topologie générale: unions et quotients d'espaces topologiques; on approfondit les notions de revêtements et de groupe fondamental,et d'attachements de cellules et on démontre
Related lectures (30)
Cellular Decomposition Examples
Explores examples of cell decomposition and its applications in different models, discussing the concept of homeomorphism and the equator of structures.
Local Homeomorphisms and Coverings
Covers the concepts of local homeomorphisms and coverings in manifolds, emphasizing the conditions under which a map is considered a local homeomorphism or a covering.
Holomorphic Functions: Taylor Series Expansion
Covers the basic properties of holomorphic maps and Taylor series expansions in complex analysis.
Show more
Related publications (8)
Related people (2)

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.