**Are you an EPFL student looking for a semester project?**

Work with us on data science and visualisation projects, and deploy your project as an app on top of GraphSearch.

Concept# Wilhelm Killing

Summary

Wilhelm Karl Joseph Killing (10 May 1847 – 11 February 1923) was a German mathematician who made important contributions to the theories of Lie algebras, Lie groups, and non-Euclidean geometry.
Killing studied at the University of Münster and later wrote his dissertation under Karl Weierstrass and Ernst Kummer at Berlin in 1872. He taught in gymnasia (secondary schools) from 1868 to 1872. He became a professor at the seminary college Collegium Hosianum in Braunsberg (now Braniewo). He took holy orders in order to take his teaching position. He became rector of the college and chair of the town council. As a professor and administrator Killing was widely liked and respected. Finally, in 1892 he became professor at the University of Münster.
In 1886, Killing and his spouse entered the Third Order of Franciscans.
In 1878 Killing wrote on space forms in terms of non-Euclidean geometry in Crelle's Journal, which he further developed in 1880 as well as in 1885. Recounting lectures of Weierstrass, he there introduced the hyperboloid model of hyperbolic geometry described by Weierstrass coordinates. He is also credited with formulating transformations mathematically equivalent to Lorentz transformations in n dimensions in 1885,.
Killing invented Lie algebras independently of Sophus Lie around 1880. Killing's university library did not contain the Scandinavian journal in which Lie's article appeared. (Lie later was scornful of Killing, perhaps out of competitive spirit and claimed that all that was valid had already been proven by Lie and all that was invalid was added by Killing.) In fact Killing's work was less rigorous logically than Lie's, but Killing had much grander goals in terms of classification of groups, and made a number of unproven conjectures that turned out to be true. Because Killing's goals were so high, he was excessively modest about his own achievement.
From 1888 to 1890, Killing essentially classified the complex finite-dimensional simple Lie algebras, as a requisite step of classifying Lie groups, inventing the notions of a Cartan subalgebra and the Cartan matrix.

Official source

This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Related concepts (12)

Killing vector field

In mathematics, a Killing vector field (often called a Killing field), named after Wilhelm Killing, is a vector field on a Riemannian manifold (or pseudo-Riemannian manifold) that preserves the metric. Killing fields are the infinitesimal generators of isometries; that is, flows generated by Killing fields are continuous isometries of the manifold. More simply, the flow generates a symmetry, in the sense that moving each point of an object the same distance in the direction of the Killing vector will not distort distances on the object.

Wilhelm Killing

Wilhelm Karl Joseph Killing (10 May 1847 – 11 February 1923) was a German mathematician who made important contributions to the theories of Lie algebras, Lie groups, and non-Euclidean geometry. Killing studied at the University of Münster and later wrote his dissertation under Karl Weierstrass and Ernst Kummer at Berlin in 1872. He taught in gymnasia (secondary schools) from 1868 to 1872. He became a professor at the seminary college Collegium Hosianum in Braunsberg (now Braniewo).

Killing form

In mathematics, the Killing form, named after Wilhelm Killing, is a symmetric bilinear form that plays a basic role in the theories of Lie groups and Lie algebras. Cartan's criteria (criterion of solvability and criterion of semisimplicity) show that Killing form has a close relationship to the semisimplicity of the Lie algebras. The Killing form was essentially introduced into Lie algebra theory by in his thesis.

Related lectures (4)

Lie Algebra: Basics and ApplicationsPHYS-739: Conformal Field theory and Gravity

Covers the basics of Lie algebra and its applications in linear equations and Einstein tensor calculations.

Isometries in Euclidean SpacesMATH-115(b): Advanced linear algebra II

Explores isometries in Euclidean spaces, including translations, rotations, and linear symmetries, with a focus on matrices.

Borcherds' Proof: StrategyMATH-680: Monstrous moonshine

Covers Borcherds' proof strategy, emphasizing the significance of simple roots and Weyl vectors.