Concept

Functional completeness

Summary
In logic, a functionally complete set of logical connectives or Boolean operators is one which can be used to express all possible truth tables by combining members of the set into a Boolean expression. A well-known complete set of connectives is { AND, NOT }. Each of the singleton sets { NAND } and { NOR } is functionally complete. However, the set { AND, OR } is incomplete, due to its inability to express NOT. A gate or set of gates which is functionally complete can also be called a universal gate / gates. A functionally complete set of gates may utilise or generate 'garbage bits' as part of its computation which are either not part of the input or not part of the output to the system. In a context of propositional logic, functionally complete sets of connectives are also called (expressively) adequate. From the point of view of digital electronics, functional completeness means that every possible logic gate can be realized as
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related publications

Loading

Related people

Loading

Related units

Loading

Related concepts

Loading

Related courses

Loading

Related lectures

Loading