In photography and , color balance is the global adjustment of the intensities of the colors (typically red, green, and blue primary colors). An important goal of this adjustment is to render specific colors – particularly neutral colors like white or grey – correctly. Hence, the general method is sometimes called gray balance, neutral balance, or white balance. Color balance changes the overall mixture of colors in an image and is used for color correction. Generalized versions of color balance are used to correct colors other than neutrals or to deliberately change them for effect. White balance is one of the most common kinds of balancing, and is when colors are adjusted to make a white object (such as a piece of paper or a wall) appear white and not a shade of any other colour.
Image data acquired by sensors – either film or electronic s – must be transformed from the acquired values to new values that are appropriate for color reproduction or display. Several aspects of the acquisition and display process make such color correction essential – including that the acquisition sensors do not match the sensors in the human eye, that the properties of the display medium must be accounted for, and that the ambient viewing conditions of the acquisition differ from the display viewing conditions.
The color balance operations in popular applications usually operate directly on the red, green, and blue channel pixel values, without respect to any color sensing or reproduction model. In film photography, color balance is typically achieved by using color correction filters over the lights or on the camera lens.
Sometimes the adjustment to keep neutrals neutral is called white balance, and the phrase color balance refers to the adjustment that in addition makes other colors in a displayed image appear to have the same general appearance as the colors in an original scene. It is particularly important that neutral (gray, neutral, white) colors in a scene appear neutral in the reproduction.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Photographic film is a strip or sheet of transparent film base coated on one side with a gelatin emulsion containing microscopically small light-sensitive silver halide crystals. The sizes and other characteristics of the crystals determine the sensitivity, contrast, and of the film. The emulsion will gradually darken if left exposed to light, but the process is too slow and incomplete to be of any practical use. Instead, a very short exposure to the image formed by a camera lens is used to produce only a very slight chemical change, proportional to the amount of light absorbed by each crystal.
In photography and cinematography, a filter is a camera accessory consisting of an optical filter that can be inserted into the optical path. The filter can be of a square or oblong shape and mounted in a holder accessory, or, more commonly, a glass or plastic disk in a metal or plastic ring frame, which can be screwed into the front of or clipped onto the camera lens. Filters modify the images recorded. Sometimes they are used to make only subtle changes to images; other times the image would simply not be possible without them.
Color temperature is a parameter describing the color of a visible light source by comparing it to the color of light emitted by an idealized opaque, non-reflective body. The temperature of the ideal emitter that matches the color most closely is defined as the color temperature of the original visible light source. Color temperature is usually measured in kelvins. The color temperature scale describes only the color of light emitted by a light source, which may actually be at a different (and often much lower) temperature.
We present a versatile technique to convert textures with tristimulus colors into the spectral domain, allowing such content to be used in modern rendering systems. Our method is based on the observation that suitable reflectance spectra can be represented ...
Designing architectural façades that allow sufficient daylight to create visually comfortable and pleasant environments is a challenging aspect of building design as it requires to account for visual comfort and discomfort glare risks, and understand the f ...
Physically based spectral rendering has become increasingly important in recent years. However, asset textures in such systems are usually still drawn or acquired as RGB tristimulus values. While a number of RGB to spectrum upsampling techniques are availa ...