Sound can be recorded and stored and played using either digital or analog techniques. Both techniques introduce errors and distortions in the sound, and these methods can be systematically compared. Musicians and listeners have argued over the superiority of digital versus analog sound recordings. Arguments for analog systems include the absence of fundamental error mechanisms which are present in digital audio systems, including aliasing and associated anti-aliasing filter implementation, jitter and quantization noise. Advocates of digital point to the high levels of performance possible with digital audio, including excellent linearity in the audible band and low levels of noise and distortion.
Two prominent differences in performance between the two methods are the bandwidth and the signal-to-noise ratio (S/N ratio). The bandwidth of the digital system is determined, according to the Nyquist frequency, by the sample rate used. The bandwidth of an analog system is dependent on the physical and electronic capabilities of the analog circuits. The S/N ratio of a digital system may be limited by the bit depth of the digitization process, but the electronic implementation of conversion circuits introduces additional noise. In an analog system, other natural analog noise sources exist, such as flicker noise and imperfections in the recording medium. Other performance differences are specific to the systems under comparison, such as the ability for more transparent filtering algorithms in digital systems and the harmonic saturation and speed variations of analog systems.
The dynamic range of an audio system is a measure of the difference between the smallest and largest amplitude values that can be represented in a medium. Digital and analog differ in both the methods of transfer and storage, as well as the behavior exhibited by the systems due to these methods.
The dynamic range of digital audio systems can exceed that of analog audio systems. Consumer analog cassette tapes have a dynamic range of 60 to 70 dB.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Sound recording and reproduction is the electrical, mechanical, electronic, or digital inscription and re-creation of sound waves, such as spoken voice, singing, instrumental music, or sound effects. The two main classes of sound recording technology are analog recording and digital recording. Sound recording is the transcription of invisible vibrations in air onto a storage medium such as a phonograph disc. The process is reversed in sound reproduction, and the variations stored on the medium are transformed back into sound waves.
Audio system measurements are a means of quantifying system performance. These measurements are made for several purposes. Designers take measurements so that they can specify the performance of a piece of equipment. Maintenance engineers make them to ensure equipment is still working to specification, or to ensure that the cumulative defects of an audio path are within limits considered acceptable. Audio system measurements often accommodate psychoacoustic principles to measure the system in a way that relates to human hearing.
A phonograph record (also known as a gramophone record, especially in British English), a vinyl record (for later varieties only), or simply a record or vinyl is an analog sound storage medium in the form of a flat disc with an inscribed, modulated spiral groove. The groove usually starts near the periphery and ends near the center of the disc. For about half a century, the discs were commonly made from shellac, with earlier records having a fine abrasive filler mixed in.
In this class we will explore some of the fundamental ways in which the pervasiveness of digital devices has completely revolutionized the world of music in the last 40 years, both from the point of v
Les concepts de base permettant de comprendre, d'analyser et de concevoir les circuits à base d'AmpliOp, dédiés à l'acquisition et conditionnement des signaux analogiques sont traités en théorie et pr
Comparaison entre les systèmes à composants discrets et les systèmes intégrés. Introduction aux systèmes électroniques numériques et analogiques et à leur interfaçage. Analyse sous forme d'un projet
While public speech resources become increasingly available, there is a growing interest to preserve the privacy of the speakers, through methods that anonymize the speaker information from speech while preserving the spoken linguistic content. In this pap ...
Cerebrovascular reactivity (CVR), defined as the cerebral blood flow response to a vasoactive stimulus, is an imaging biomarker with demonstrated utility in a range of diseases and in typical development and aging processes. A robust and widely implemented ...
ACADEMIC PRESS INC ELSEVIER SCIENCE2023
,
Counting single photons and measuring their arrival time is of crucial importance for imaging and quantum applications that use single photons to outperform classical techniques. The investigation of the coincidence, i.e. correlation, between photons can b ...