Summary
Inconel is a nickel-chromium-based superalloy often utilized in extreme environments where components are subjected to high temperature, pressure or mechanical loads. Inconel alloys are oxidation- and corrosion-resistant, when heated, Inconel forms a thick, stable, passivating oxide layer protecting the surface from further attack. Inconel retains strength over a wide temperature range, attractive for high-temperature applications where aluminum and steel would succumb to creep as a result of thermally-induced crystal vacancies. Inconel's high-temperature strength is developed by solid solution strengthening or precipitation hardening, depending on the alloy. Inconel alloys are typically used in high temperature applications. Common trade names for Inconel Alloy 625 include: Inconel 625, Chronin 625, Altemp 625, Haynes 625, Nickelvac 625 Nicrofer 6020 and UNS designation N06625. Inconel Alloy 600 include: NA14, BS3076, 2.4816, NiCr15Fe (FR), NiCr15Fe (EU), NiCr15Fe8 (DE) and UNS designation N06600. Inconel 718 include: Nicrofer 5219, Superimphy 718, Haynes 718, Pyromet 718, Supermet 718, Udimet 718 and UNS designation N07718. The Inconel family of alloys was first developed before December 1932, when its trademark was registered by the International Nickel Company of Delaware and New York. A significant early use was found in support of the development of the Whittle jet engine, during the 1940s by research teams at Henry Wiggin & Co of Hereford, England a subsidiary of the Mond Nickel Company, which merged with Inco in 1928. The Hereford Works and its properties including the Inconel trademark were acquired in 1998 by Special Metals Corporation. Inconel alloys vary widely in their compositions, but all are predominantly nickel, with chromium as the second element. When heated, Inconel forms a thick and stable passivating oxide layer protecting the surface from further attack. Inconel retains strength over a wide temperature range, attractive for high-temperature applications where aluminium and steel would succumb to creep as a result of thermally induced crystal vacancies (see Arrhenius equation).
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.