König's theorem (set theory)In set theory, König's theorem states that if the axiom of choice holds, I is a set, and are cardinal numbers for every i in I, and for every i in I, then The sum here is the cardinality of the disjoint union of the sets mi, and the product is the cardinality of the Cartesian product. However, without the use of the axiom of choice, the sum and the product cannot be defined as cardinal numbers, and the meaning of the inequality sign would need to be clarified.
Real numberIn mathematics, a real number is a number that can be used to measure a continuous one-dimensional quantity such as a distance, duration or temperature. Here, continuous means that pairs of values can have arbitrarily small differences. Every real number can be almost uniquely represented by an infinite decimal expansion. The real numbers are fundamental in calculus (and more generally in all mathematics), in particular by their role in the classical definitions of limits, continuity and derivatives.
Aleph numberIn mathematics, particularly in set theory, the aleph numbers are a sequence of numbers used to represent the cardinality (or size) of infinite sets that can be well-ordered. They were introduced by the mathematician Georg Cantor and are named after the symbol he used to denote them, the Hebrew letter aleph (). The cardinality of the natural numbers is (read aleph-nought or aleph-zero; the term aleph-null is also sometimes used), the next larger cardinality of a well-ordered set is aleph-one then and so on.
Cantor's theoremIn mathematical set theory, Cantor's theorem is a fundamental result which states that, for any set , the set of all subsets of the power set of has a strictly greater cardinality than itself. For finite sets, Cantor's theorem can be seen to be true by simple enumeration of the number of subsets. Counting the empty set as a subset, a set with elements has a total of subsets, and the theorem holds because for all non-negative integers. Much more significant is Cantor's discovery of an argument that is applicable to any set, and shows that the theorem holds for infinite sets also.
EquinumerosityIn mathematics, two sets or classes A and B are equinumerous if there exists a one-to-one correspondence (or bijection) between them, that is, if there exists a function from A to B such that for every element y of B, there is exactly one element x of A with f(x) = y. Equinumerous sets are said to have the same cardinality (number of elements). The study of cardinality is often called equinumerosity (equalness-of-number). The terms equipollence (equalness-of-strength) and equipotence (equalness-of-power) are sometimes used instead.
Regular cardinalIn set theory, a regular cardinal is a cardinal number that is equal to its own cofinality. More explicitly, this means that is a regular cardinal if and only if every unbounded subset has cardinality . Infinite well-ordered cardinals that are not regular are called singular cardinals. Finite cardinal numbers are typically not called regular or singular. In the presence of the axiom of choice, any cardinal number can be well-ordered, and then the following are equivalent for a cardinal : is a regular cardinal.
Successor cardinalIn set theory, one can define a successor operation on cardinal numbers in a similar way to the successor operation on the ordinal numbers. The cardinal successor coincides with the ordinal successor for finite cardinals, but in the infinite case they diverge because every infinite ordinal and its successor have the same cardinality (a bijection can be set up between the two by simply sending the last element of the successor to 0, 0 to 1, etc., and fixing ω and all the elements above; in the style of Hilbert's Hotel Infinity).
Beth numberIn mathematics, particularly in set theory, the beth numbers are a certain sequence of infinite cardinal numbers (also known as transfinite numbers), conventionally written , where is the second Hebrew letter (beth). The beth numbers are related to the aleph numbers (), but unless the generalized continuum hypothesis is true, there are numbers indexed by that are not indexed by . Beth numbers are defined by transfinite recursion: where is an ordinal and is a limit ordinal.
Limit cardinalIn mathematics, limit cardinals are certain cardinal numbers. A cardinal number λ is a weak limit cardinal if λ is neither a successor cardinal nor zero. This means that one cannot "reach" λ from another cardinal by repeated successor operations. These cardinals are sometimes called simply "limit cardinals" when the context is clear. A cardinal λ is a strong limit cardinal if λ cannot be reached by repeated powerset operations. This means that λ is nonzero and, for all κ < λ, 2κ < λ.
CofinalityIn mathematics, especially in order theory, the cofinality cf(A) of a partially ordered set A is the least of the cardinalities of the cofinal subsets of A. This definition of cofinality relies on the axiom of choice, as it uses the fact that every non-empty set of cardinal numbers has a least member. The cofinality of a partially ordered set A can alternatively be defined as the least ordinal x such that there is a function from x to A with cofinal . This second definition makes sense without the axiom of choice.