In chemical thermodynamics, the reaction quotient (Qr or just Q) is a dimensionless quantity that provides a measurement of the relative amounts of products and reactants present in a reaction mixture for a reaction with well-defined overall stoichiometry, at a particular point in time. Mathematically, it is defined as the ratio of the activities (or molar concentrations) of the product species over those of the reactant species involved in the chemical reaction, taking stoichiometric coefficients of the reaction into account as exponents of the concentrations. In equilibrium, the reaction quotient is constant over time and is equal to the equilibrium constant.
A general chemical reaction in which α moles of a reactant A and β moles of a reactant B react to give ρ moles of a product R and σ moles of a product S can be written as
\it \alpha,\rm A{} + \it \beta,\rm B{} \it \rho,\rm R{} + \it \sigma,\rm S{}.
The reaction is written as an equilibrium even though in many cases it may appear that all of the reactants on one side have been converted to the other side. When any initial mixture of A, B, R, and S is made, and the reaction is allowed to proceed (either in the forward or reverse direction), the reaction quotient Qr, as a function of time t, is defined as
where {X}t denotes the instantaneous activity of a species X at time t.
A compact general definition is
where Пj denotes the product across all j-indexed variables, aj(t) is the activity of species j at time t, and νj is the stoichiometric number (the stoichiometric coefficient multiplied by +1 for products and –1 for starting materials).
As the reaction proceeds with the passage of time, the species' activities, and hence the reaction quotient, change in a way that reduces the free energy of the chemical system. The direction of the change is governed by the Gibbs free energy of reaction by the relation
where K is a constant independent of initial composition, known as the equilibrium constant.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
In chemical thermodynamics, the fugacity of a real gas is an effective partial pressure which replaces the mechanical partial pressure in an accurate computation of chemical equilibrium. It is equal to the pressure of an ideal gas which has the same temperature and molar Gibbs free energy as the real gas. Fugacities are determined experimentally or estimated from various models such as a Van der Waals gas that are closer to reality than an ideal gas. The real gas pressure and fugacity are related through the dimensionless fugacity coefficient φ.
The equilibrium constant of a chemical reaction is the value of its reaction quotient at chemical equilibrium, a state approached by a dynamic chemical system after sufficient time has elapsed at which its composition has no measurable tendency towards further change. For a given set of reaction conditions, the equilibrium constant is independent of the initial analytical concentrations of the reactant and product species in the mixture.
In thermodynamics, the Gibbs free energy (or Gibbs energy as the recommended name; symbol ) is a thermodynamic potential that can be used to calculate the maximum amount of work, other than pressure-volume work, that may be performed by a thermodynamically closed system at constant temperature and pressure. It also provides a necessary condition for processes such as chemical reactions that may occur under these conditions. The Gibbs free energy is expressed as where p is pressure, T is the temperature, U is the internal energy, V is volume, H is the enthalpy, and S is the entropy.
Cet enseignement vise l'acquisition des notions essentielles relatives à la structure de la matière, aux équilibres et à la réactivité chimiques. Le cours et les exercices fournissent la méthodologie
Le cours comporte deux parties. Les bases de la thermodynamique des équilibres et de la cinétique des réactions sont introduites dans l'une d'elles. Les premières notions de chimie quantique sur les é
This course presents the theoretical bases of electronic spectroscopy and molecular photophysics. The principles of the reactivity of excited states of molecules and solids under irradiation are detai
Extent-based kinetic identification is a modeling technique that uses number of moles / concentrations measurements to compute extents and identify reaction kinetics (partial orders of reactions and reaction rate constant) by the integral method of paramet ...
Two isotopic chemical reactions, Ne* + NH_3, and Ne* + ND_3, have been studied at low collision energies by means of a merged beams technique. Partial cross sections have been recorded for the two reactive channels, namely, Ne* + NH_3 → Ne + NH^+_3 + e −, ...
American Institute of Physics2014
, ,
In this work, the effect of sulphur poisoning of the Ni-YSZ electrode of an SOEC operated in co-electrolysis mode was investigated. Short-term tests with exposure up to 5 ppmv of SO2 were performed at OCV and under polarization (0.25 A cm−2). The two-stage ...