Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
Event-based dynamic vision sensors (DVSs) asynchronously report log intensity changes. Their high dynamic range, sub-ms latency and sparse output make them useful in applications such as robotics and real-time tracking. However they discard absolute intens ...
We present LCAV-31, a multi-view object recognition dataset designed specifically for benchmarking light field image analysis tasks. The principal distinctive factor of LCAV-31 compared to similar datasets is its design goals and availability of novel visu ...
International Society for Optics and Photonics2014
A crucial feature of a good scene recognition algorithm is its ability to generalize. Scene categories, especially those related to human made indoor places or to human activities like sports, do present a high degree of intra-class variability, which in t ...
This paper introduces a non-linear vector-based feature mapping approach to extract robust features for au- tomatic speech recognition (ASR) of overlapping speech using a microphone array. We explore different configurations and additional sources of infor ...
Achieving perfect scale-invariance is usually not possible using classical color image features. This is mostly because of the fact that a traditional image is a two-dimensional projection of the real world. In contrast, light field imaging makes available ...
International Society for Optics and Photonics2014
In classical models of object recognition, first, basic features (e.g., edges and lines) are analyzed by independent filters that mimic the receptive field profiles of V1 neurons. In a feedforward fashion, the outputs of these filters are fed to filters at ...
Visual scene recognition deals with the problem of automatically recognizing the high-level semantic concept describing a given image as a whole, such as the environment in which the scene is occurring (e.g. a mountain), or the event that is taking place ( ...
École Polytechnique Fédérale de Lausanne (EPFL)2014
Visual scene recognition deals with the problem of automatically recognizing the high-level semantic concept describing a given image as a whole, such as the environment in which the scene is occurring (e.g. a mountain), or the event that is taking place ( ...
Classical Boosting algorithms, such as AdaBoost, build a strong classifier without concern for the computational cost. Some applications, in particular in computer vision, may involve millions of training examples and very large feature spaces. In such con ...
We present a conditional random field approach to tracking-by-detection in which we model pairwise factors linking pairs of detections and their hidden labels, as well as higher order potentials defined in terms of label costs. To the contrary of previous ...