Summary
Electron-beam processing or electron irradiation (EBI) is a process that involves using electrons, usually of high energy, to treat an object for a variety of purposes. This may take place under elevated temperatures and nitrogen atmosphere. Possible uses for electron irradiation include sterilization, alteration of gemstone colors, and cross-linking of polymers. Electron energies typically vary from the keV to MeV range, depending on the depth of penetration required. The irradiation dose is usually measured in grays but also in Mrads (1 Gy is equivalent to 100 rad). The basic components of a typical electron-beam processing device include: an electron gun (consisting of a cathode, grid, and anode), used to generate and accelerate the primary beam; and, a magnetic optical (focusing and deflection) system, used for controlling the way in which the electron beam impinges on the material being processed (the "workpiece"). In operation, the gun cathode is the source of thermally emitted electrons that are both accelerated and shaped into a collimated beam by the electrostatic field geometry established by the gun electrode (grid and anode) configuration used. The electron beam then emerges from the gun assembly through an exit hole in the ground-plane anode with an energy equal to the value of the negative high voltage (gun operating voltage) being applied to the cathode. This use of a direct high voltage to produce a high-energy electron beam allows the conversion of input electrical power to beam power at greater than 95% efficiency, making electron-beam material processing a highly energy-efficient technique. After exiting the gun, the beam passes through an electromagnetic lens and deflection coil system. The lens is used for producing either a focused or defocused beam spot on the workpiece, while the deflection coil is used to either position the beam spot on a stationary location or provide some form of oscillatory motion. In polymers, an electron beam may be used on the material to induce effects such as chain scission (which makes the polymer chain shorter) and cross-linking.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related publications (87)