High-altitude pulmonary edema (HAPE) is a life-threatening form of non-cardiogenic pulmonary edema that occurs in otherwise healthy people at altitudes typically above . However, cases have also been reported between in more vulnerable subjects. Classically, HAPE occurs in persons normally living at low altitude who travel to an altitude above 2,500 meters (8,200 feet). Re-entry HAPE is also an entity that has been described in persons who normally live at high altitude but who develop pulmonary edema after returning from a stay at low altitude. It is severe presentation of altitude sickness. There are many factors that can make a person more susceptible to developing HAPE, including genetic factors, but detailed understanding is lacking and currently under investigation. HAPE remains the major cause of death related to high-altitude exposure, with a high mortality rate in the absence of adequate emergency treatment. Physiological and symptomatic changes often vary according to the altitude involved. The Lake Louise Consensus Definition for high-altitude pulmonary edema has set widely used criteria for defining HAPE symptoms. In the presence of a recent gain in altitude, the presence of the following: Symptoms: at least two of: Shortness of breath at rest Cough Weakness or decreased exercise performance Chest tightness or congestion Signs: at least two of: Crackles or wheezing (while breathing) in at least one lung field Central blue skin color Tachypnea (rapid breathing) Tachycardia (rapid heart rate) Acute mountain sickness and high altitude cerebral edema may also be present in conjunction with HAPE, however these symptoms may be subtle or not present at all. The most reliable sign of HAPE is severe fatigue or exercise intolerance, especially in a climber that was previously not displaying this symptom. There are multiple factors that can contribute to the development of HAPE, including sex (male), genetic factors, prior development of HAPE, ascent rate, cold exposure, peak altitude, intensity of physical exertion, and certain underlying medical conditions (e.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related courses (1)
BIO-377: Physiology by systems
Le but est de connaitre et comprendre le fonctionnement des systèmes cardiovasculaire, urinaire, respiratoire, digestif, ainsi que du métabolisme de base et sa régulation afin de déveloper une réflect
Related lectures (16)
Altitudes Definition and Measurement PrincipleMOOC: Elements of Geomatics
Explores altitudes definitions, measurement principles, and geomatics elements for accurate height determination using leveling instruments.
Geometric LevelingMOOC: Elements of Geomatics
Explains the principles of geometric leveling for height determination in construction and measurement works.
Quantization: Topological Operators
Covers the quantization of topological operators and Ising models on square lattices.
Show more
Related publications (32)

Wintertime vertical distribution of air pollution in suburban Fairbanks during the ALPACA 2022 field campaign

Julia Schmale, Andrea Baccarini, Roman Pohorsky

The Alaskan Layered Pollution and Chemical Analysis (ALPACA) field campaign investigated the sources and processing of wintertime urban pollution in Fairbanks, Alaska in January and February 2022. Several sites located around the city of Fairbanks collecte ...
2023

Harvesting large astronomical data archives for space debris observations

Jean-Paul Richard Kneib, Stephan Hellmich, Elisabeth Andréa Cécile Rachith, Belén Yu Irureta-Goyena Chang

Despite enormous observational effort by numerous space surveillance networks, the population of small (
ESA Space Debris Office2023

Characterizing airborne snow metamorphism using stable water isotope measurements in snow and vapor from ring wind tunnel experiments

Michael Lehning, Sonja Wahl, Luca Bianchi, Benjamin Andreas Walter

Drifting-blowing snow events are frequent phenomena in alpine and polar regions with direct effects on the local mass and energy balance that are difficult to quantify. In addition to this immediate impact of the blowing snow cloud the aeolian transport mo ...
2023
Show more
Related concepts (11)
Altitude sickness
Altitude sickness, the mildest form being acute mountain sickness (AMS), is a harmful effect of high altitude, caused by rapid exposure to low amounts of oxygen at high elevation. People can respond to high altitude in different ways. Symptoms may include headaches, vomiting, tiredness, confusion, trouble sleeping, and dizziness. Acute mountain sickness can progress to high-altitude pulmonary edema (HAPE) with associated shortness of breath or high-altitude cerebral edema (HACE) with associated confusion.
Effects of high altitude on humans
The effects of high altitude on humans are mostly the consequences of reduced partial pressure of oxygen in the atmosphere. The oxygen saturation of hemoglobin determines the content of oxygen in blood. After the human body reaches around above sea level, the saturation of oxyhemoglobin begins to decrease rapidly. However, the human body has both short-term and long-term adaptations to altitude that allow it to partially compensate for the lack of oxygen.
High-altitude cerebral edema
High-altitude cerebral edema (HACE) is a medical condition in which the brain swells with fluid because of the physiological effects of traveling to a high altitude. It generally appears in patients who have acute mountain sickness and involves disorientation, lethargy, and nausea among other symptoms. It occurs when the body fails to acclimatize while ascending to a high altitude. It appears to be a vasogenic edema (fluid penetration of the blood–brain barrier), although cytotoxic edema (cellular retention of fluids) may play a role as well.
Show more

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.