**Are you an EPFL student looking for a semester project?**

Work with us on data science and visualisation projects, and deploy your project as an app on top of GraphSearch.

Concept# Scalar field

Summary

In mathematics and physics, a scalar field is a function associating a single number to every point in a space – possibly physical space. The scalar may either be a pure mathematical number (dimensionless) or a scalar physical quantity (with units).
In a physical context, scalar fields are required to be independent of the choice of reference frame. That is, any two observers using the same units will agree on the value of the scalar field at the same absolute point in space (or spacetime) regardless of their respective points of origin. Examples used in physics include the temperature distribution throughout space, the pressure distribution in a fluid, and spin-zero quantum fields, such as the Higgs field. These fields are the subject of scalar field theory.
Definition
Mathematically, a scalar field on a region U is a real or complex-valued function or distribution on U. The region U may be a set in some Euclidean space, Minkowski space, or more generally a subset of a

Official source

This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Related publications

Loading

Related people

Loading

Related units

Loading

Related concepts

Loading

Related courses

Loading

Related lectures

Loading

Related courses (57)

PHYS-416: Particle physics II

Presentation of the electroweak and strong interaction theories that constitute the Standard Model of particle physics. The course also discusses the new theories proposed to solve the problems of the Standard Model.

PHYS-427: Relativity and cosmology I

Introduce the students to general relativity and its classical tests.

PHYS-431: Quantum field theory I

The goal of the course is to introduce relativistic quantum field theory as the conceptual and mathematical framework describing fundamental interactions.

Related people (36)

, , , , , , , , ,

Related units (29)

Related lectures (105)

Related concepts (93)

Quantum field theory

In theoretical physics, quantum field theory (QFT) is a theoretical framework that combines classical field theory, special relativity, and quantum mechanics. QFT is used in particle physics to cons

General relativity

General relativity, also known as the general theory of relativity and Einstein's theory of gravity, is the geometric theory of gravitation published by Albert Einstein in 1915 and is the current des

Higgs boson

The Higgs boson, sometimes called the Higgs particle, is an elementary particle in the Standard Model of particle physics produced by the quantum excitation of the Higgs field, one of the fields in

Related publications (100)

Loading

Loading

Loading

Conformal field theories (CFTs) play a very significant role in modern physics, appearing in such diverse fields as particle physics, condensed matter and statistical physics and in quantum gravity both as the string worldsheet theory and through the AdS/CFT correspondence. In recent years major breakthroughs have been made in solving these CFTs through a method called numerical conformal bootstrap. This method uses consistency conditions on the CFT data in order to find and constrain conformal field theories and obtain precise measurements of physical observables. In this thesis we apply the conformal bootstrap to study among others the O(2)- and the ARP^3- models in 3D.
In the first chapter we extend the conventional scalar numerical conformal bootstrap to a mixed system of correlators involving a scalar field charged under a global U(1) symmetry and the associated conserved spin-1 current J. The inclusion of a conserved spinning operator is an important advance in the numerical bootstrap program. Using numerical bootstrap techniques we obtain bounds on new observables not accessible in the usual scalar bootstrap. Concentrating on the O(2) model we extract rigorous bounds on the three-point function coefficient of two currents and the unique relevant scalar singlet, as well as those of two currents and the stress tensor. Using these results, and comparing with a quantum Monte Carlo simulation of the O(2) model conductivity, we give estimates of the thermal one-point function of the relevant singlet and the stress tensor. We also obtain new bounds on operators in various sectors.
In the second chapter we investigate the existence of a second-order phase transition in the ARP^3 model. This model has a global O(4) symmetry and a discrete Z_2 gauge symmetry. It was shown by a perturbative renormalization group analysis that its Landau-Ginzburg-Wilson effective description does not have any stable fixed point, thus disallowing a second-order phase transition. However, it was also shown that lattice simulations contradict this, finding strong evidence for the existence of a second-order phase transition. In this chapter we apply conformal bootstrap methods to the correlator of four scalars t transforming in the traceless symmetric representation of O(4) in order to investigate the existence of this second order phase transition. We find various features that stand out in the region predicted by the lattice data. Moreover, under reasonable assumptions a candidate island can be isolated. We also apply a mixed t-s bootstrap setup in which this island persists. In addition we study the kink-landscape for all representations appearing in the t times t OPE for general N. Among others, we find a new family of kinks in the upper-bound on the dimension of the first scalar operator in the "Box" and "Hook" representations.

General relativity (GR) exists in different formulations. They are equivalent in pure gravity but generically lead to distinct predictions once matter is included. After a brief overview of various versions of GR, we focus on metric-affine gravity, which avoids any assumption about the vanishing of curvature, torsion, or nonmetricity. We use it to construct an action of a scalar field coupled nonminimally to gravity. It encompasses as special cases numerous previously studied models. Eliminating nonpropagating degrees of freedom, we derive an equivalent theory in the metric formulation of GR. Finally, we give a brief outlook of implications for Higgs inflation.

We study fixed points with N scalar fields in 4 - epsilon dimensions to leading order in epsilon using a bottom-up approach. We do so by analyzing O(N) invariants of the quartic coupling lambda(ijkl) that describes such CFTs. In particular, we show that lambda(iijj) and lambda ijkl2 are restricted to a specific domain, refining a result by Rychkov and Stergiou. We also study averages of one-loop anomalous dimensions of composite operators without gradients. In many cases, we are able to show that the O(N) fixed point maximizes such averages. In the final part of this work, we generalize our results to theories with N complex scalars and to bosonic QED. In particular we show that to leading order in epsilon, there are no bosonic QED fixed points with N < 183 flavors.