Aneutronic fusion is any form of fusion power in which very little of the energy released is carried by neutrons. While the lowest-threshold nuclear fusion reactions release up to 80% of their energy in the form of neutrons, aneutronic reactions release energy in the form of charged particles, typically protons or alpha particles. Successful aneutronic fusion would greatly reduce problems associated with neutron radiation such as damaging ionizing radiation, neutron activation, reactor maintenance, and requirements for biological shielding, remote handling and safety.
Since it is simpler to convert the energy of charged particles into electrical power than it is to convert energy from uncharged particles, an aneutronic reaction would be attractive for power systems. Some proponents see a potential for dramatic cost reductions by converting energy directly to electricity, as well as in eliminating the radiation from neutrons, which are difficult to shield against. However, the conditions required to harness aneutronic fusion are much more extreme than those required for deuterium-tritium fusion such as at ITER or Wendelstein 7-X.
The first experiments in the field started in 1939, and serious efforts have been continual since the early 1950s.
An early supporter was Richard F. Post at Lawrence Livermore. He proposed to capture the kinetic energy of charged particles as they were exhausted from a fusion reactor and convert this into voltage to drive current. Post helped develop the theoretical underpinnings of direct conversion, later demonstrated by Barr and Moir. They demonstrated a 48 percent energy capture efficiency on the Tandem Mirror Experiment in 1981.
Polywell fusion was pioneered by the late Robert W. Bussard in 1995 and funded by the US Navy. Polywell uses inertial electrostatic confinement. He founded EMC2 to continue polywell research.
A picosecond pulse of a 10-terawatt laser produced hydrogen–boron aneutronic fusions for a Russian team in 2005. However, the number of the resulting α particles (around 103 per laser pulse) was low.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Magnetic confinement fusion is an approach to generate thermonuclear fusion power that uses magnetic fields to confine fusion fuel in the form of a plasma. Magnetic confinement is one of two major branches of fusion energy research, along with inertial confinement fusion. The magnetic approach began in the 1940s and absorbed the majority of subsequent development. Fusion reactions combine light atomic nuclei such as hydrogen to form heavier ones such as helium, producing energy.
A fusor is a device that uses an electric field to heat ions to conditions that allow nuclear fusion. The machine induces a voltage between two metal cages, inside a vacuum. Positive ions fall down this voltage drop, building up speed. If they collide in the center, they can fuse. This is one kind of an inertial electrostatic confinement device – a branch of fusion research. A Farnsworth–Hirsch fusor is the most common type of fusor. This design came from work by Philo T. Farnsworth in 1964 and Robert L.
A dense plasma focus (DPF) is a type of plasma generating system originally developed as a fusion power device starting in the early 1960s. The system demonstrated scaling laws that suggested it would not be useful in the commercial power role, and since the 1980s it has been used primarily as a fusion teaching system, and as a source of neutrons and X-rays. The original concept was developed in 1954 by N.V. Filippov, who noticed the effect while working on early pinch machines in the USSR.
Learn the basics of plasma, one of the fundamental states of matter, and the different types of models used to describe it, including fluid and kinetic.
Learn the basics of plasma, one of the fundamental states of matter, and the different types of models used to describe it, including fluid and kinetic.
The goal of the course is to provide the physics and technology basis for controlled fusion research, from the main elements of plasma physics to the reactor concepts.
The course provides an overview of the technologies that are essential for fusion developments and for industrial plasma applications, highlighting the synergies between the two fields. The aim is to
The purpose of this course is to provide the necessary background to understand the effects of irradiation on pure metals and on alloys used in the nuclear industry. The relation between the radiation
Explores glass bonding techniques to silicon, covering principles, mechanisms, applications, and evaluation methods, including surface treatments for enhanced adhesion strength.
Plasma turbulence plays a fundamental role in determining the performances of magnetic confinement fusion devices, such as tokamaks. Advances in computer science, combined with the development of efficient physical models, have significantly improved our u ...
MAST-U is equipped with on-axis and off-axis neutral beam injectors (NBI), and these external sources of super-Alfv & eacute;nic deuterium fast-ions provide opportunities for studying a wide range of phenomena relevant to the physics of alpha-particles in ...
In magnetic fusion devices, error field (EF) sources, spurious magnetic field perturbations, need to be identified and corrected for safe and stable (disruption-free) tokamak operation. Within Work Package Tokamak Exploitation RT04, a series of studies hav ...