Concept

Fusor

Summary
A fusor is a device that uses an electric field to heat ions to conditions that allow nuclear fusion. The machine induces a voltage between two metal cages, inside a vacuum. Positive ions fall down this voltage drop, building up speed. If they collide in the center, they can fuse. This is one kind of an inertial electrostatic confinement device – a branch of fusion research. A Farnsworth–Hirsch fusor is the most common type of fusor. This design came from work by Philo T. Farnsworth in 1964 and Robert L. Hirsch in 1967. A variant type of fusor had been proposed previously by William Elmore, James L. Tuck, and Ken Watson at the Los Alamos National Laboratory though they never built the machine. Fusors have been built by various institutions. These include academic institutions such as the University of Wisconsin–Madison, the Massachusetts Institute of Technology and government entities, such as the Atomic Energy Organization of Iran and the Turkish Atomic Energy Authority. Fusors have also been developed commercially, as sources for neutrons by DaimlerChrysler Aerospace and as a method for generating medical isotopes. Fusors have also become very popular for hobbyists and amateurs. A growing number of amateurs have performed nuclear fusion using simple fusor machines. However, fusors are not considered a viable concept for large-scale energy production by scientists. Fusion takes place when nuclei approach to a distance where the nuclear force can pull them together into a single larger nucleus. Opposing this close approach are the positive charges in the nuclei, which force them apart due to the electrostatic force. In order to produce fusion events, the nuclei must have initial energy great enough to allow them to overcome this Coulomb barrier. As the nuclear force is increased with the number of nucleons, protons and neutrons, and the electromagnetic force is increased with the number of protons only, the easiest atoms to fuse are isotopes of hydrogen, deuterium with one neutron, and tritium with two.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.