In mathematics, geometric invariant theory (or GIT) is a method for constructing quotients by group actions in algebraic geometry, used to construct moduli spaces. It was developed by David Mumford in 1965, using ideas from the paper in classical invariant theory.
Geometric invariant theory studies an action of a group G on an algebraic variety (or scheme) X and provides techniques for forming the 'quotient' of X by G as a scheme with reasonable properties. One motivation was to construct moduli spaces in algebraic geometry as quotients of schemes parametrizing marked objects. In the 1970s and 1980s the theory developed interactions with symplectic geometry and equivariant topology, and was used to construct moduli spaces of objects in differential geometry, such as instantons and monopoles.
Invariant theory
Invariant theory is concerned with a group action of a group G on an algebraic variety (or a scheme) X. Classical invariant theory addresses the situation when X = V is a vector space and G is either a finite group, or one of the classical Lie groups that acts linearly on V. This action induces a linear action of G on the space of polynomial functions R(V) on V by the formula
The polynomial invariants of the G-action on V are those polynomial functions f on V which are fixed under the 'change of variables' due to the action of the group, so that g · f = f for all G in G. They form a commutative algebra A = R(V)^G, and this algebra is interpreted as the algebra of functions on the 'invariant theory quotient' V // G because any one of these functions gives the same value for all points that are equivalent (that is, f (v) = f (gv) for all g). In the language of modern algebraic geometry,
Several difficulties emerge from this description. The first one, successfully tackled by Hilbert in the case of a general linear group, is to prove that the algebra A is finitely generated. This is necessary if one wanted the quotient to be an affine algebraic variety.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
This course is aimed to give students an introduction to the theory of algebraic curves, with an emphasis on the interplay between the arithmetic and the geometry of global fields. One of the principl
We will study classical and modern deformation theory of schemes and coherent sheaves. Participants should have a solid background in scheme-theory, for example being familiar with the first 3 chapter
This is a glossary of algebraic geometry. See also glossary of commutative algebra, glossary of classical algebraic geometry, and glossary of ring theory. For the number-theoretic applications, see glossary of arithmetic and Diophantine geometry. For simplicity, a reference to the base scheme is often omitted; i.e., a scheme will be a scheme over some fixed base scheme S and a morphism an S-morphism.
Invariant theory is a branch of abstract algebra dealing with actions of groups on algebraic varieties, such as vector spaces, from the point of view of their effect on functions. Classically, the theory dealt with the question of explicit description of polynomial functions that do not change, or are invariant, under the transformations from a given linear group. For example, if we consider the action of the special linear group SLn on the space of n by n matrices by left multiplication, then the determinant is an invariant of this action because the determinant of A X equals the determinant of X, when A is in SLn.
Representation theory is a branch of mathematics that studies abstract algebraic structures by representing their elements as linear transformations of vector spaces, and studies modules over these abstract algebraic structures. In essence, a representation makes an abstract algebraic object more concrete by describing its elements by matrices and their algebraic operations (for example, matrix addition, matrix multiplication).
Explores algebraic varieties in linear algebra, focusing on their nature, determinants, irreducibility, prime properties, and geometric representation theory.
Delves into the geometrical properties of quotients by linearly reductive groups, emphasizing the uniqueness of closed orbits and the concept of a geometric quotient.
The theory of persistence, which arises from topological data analysis, has been intensively studied in the one-parameter case both theoretically and in its applications. However, its extension to the multi-parameter case raises numerous difficulties, wher ...
Let G be a finite subgroup of SU(4) such that its elements have age at most one. In the first part of this paper, we define K-theoretic stable pair invariants on a crepant resolution of the affine quotient C4/G, and conjecture a closed formula for their ge ...
This thesis is constituted of one article and three preprints that I wrote during my PhD thesis. Their common theme is the moduli theory of algebraic varieties. In the first article I study the Chow--Mumford line bundle for families of uniformly K-stable F ...