**Are you an EPFL student looking for a semester project?**

Work with us on data science and visualisation projects, and deploy your project as an app on top of GraphSearch.

Publication# Algebraic Homotopy Interleaving Distance

Abstract

The theory of persistence, which arises from topological data analysis, has been intensively studied in the one-parameter case both theoretically and in its applications. However, its extension to the multi-parameter case raises numerous difficulties, where it has been proven that no barcode-like decomposition exists. To tackle this problem, algebraic invariants have been proposed to summarize multi-parameter persistence modules, adapting classical ideas from commutative algebra and algebraic geometry to this context. Nevertheless, the crucial question of their stability has raised little attention so far, and many of the proposed invariants do not satisfy a naive form of stability. In this paper, we equip the homotopy and the derived category of multi-parameter persistence modules with an appropriate interleaving distance. We prove that resolution functors are always isometric with respect to this distance. As an application, this explains why the graded-Betti numbers of a persistence module do not satisfy a naive form of stability. This opens the door to performing homological algebra operations while keeping track of stability. We believe this approach can lead to the definition of new stable invariants for multi-parameter persistence, and to new computable lower bounds for the interleaving distance (which has been recently shown to be NP-hard to compute in [2]).

Official source

This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Related MOOCs (9)

Related concepts (16)

Related publications (4)

Algebra (part 1)

Un MOOC francophone d'algèbre linéaire accessible à tous, enseigné de manière rigoureuse et ne nécessitant aucun prérequis.

Algebra (part 1)

Un MOOC francophone d'algèbre linéaire accessible à tous, enseigné de manière rigoureuse et ne nécessitant aucun prérequis.

Algebra (part 2)

Un MOOC francophone d'algèbre linéaire accessible à tous, enseigné de manière rigoureuse et ne nécessitant aucun prérequis.

Algebraic geometry

Algebraic geometry is a branch of mathematics which classically studies zeros of multivariate polynomials. Modern algebraic geometry is based on the use of abstract algebraic techniques, mainly from commutative algebra, for solving geometrical problems about these sets of zeros. The fundamental objects of study in algebraic geometry are algebraic varieties, which are geometric manifestations of solutions of systems of polynomial equations.

Homotopy

In topology, a branch of mathematics, two continuous functions from one topological space to another are called homotopic (from ὁμός "same, similar" and τόπος "place") if one can be "continuously deformed" into the other, such a deformation being called a homotopy (həˈmɒtəpiː, ; ˈhoʊmoʊˌtoʊpiː, ) between the two functions. A notable use of homotopy is the definition of homotopy groups and cohomotopy groups, important invariants in algebraic topology. In practice, there are technical difficulties in using homotopies with certain spaces.

Commutative algebra

Commutative algebra, first known as ideal theory, is the branch of algebra that studies commutative rings, their ideals, and modules over such rings. Both algebraic geometry and algebraic number theory build on commutative algebra. Prominent examples of commutative rings include polynomial rings; rings of algebraic integers, including the ordinary integers ; and p-adic integers. Commutative algebra is the main technical tool in the local study of schemes.

A language is said to be homogeneous when all its words have the same length. Homogeneous languages thus form a monoid under concatenation. It becomes freely commutative under the simultaneous actions

2019Seyed Hossein Nassajianmojarrad

In the present thesis, we delve into different extremal and algebraic problems arising from combinatorial geometry. Specifically, we consider the following problems. For any integer $n\ge 3$, we defin

In this thesis, we investigate the inverse problem of trees and barcodes from a combinatorial, geometric, probabilistic and statistical point of view.Computing the persistent homology of a merge tree