Summary
In mathematics, a symmetric space is a Riemannian manifold (or more generally, a pseudo-Riemannian manifold) whose group of symmetries contains an inversion symmetry about every point. This can be studied with the tools of Riemannian geometry, leading to consequences in the theory of holonomy; or algebraically through Lie theory, which allowed Cartan to give a complete classification. Symmetric spaces commonly occur in differential geometry, representation theory and harmonic analysis. In geometric terms, a complete, simply connected Riemannian manifold is a symmetric space if and only if its curvature tensor is invariant under parallel transport. More generally, a Riemannian manifold (M, g) is said to be symmetric if and only if, for each point p of M, there exists an isometry of M fixing p and acting on the tangent space as minus the identity (every symmetric space is complete, since any geodesic can be extended indefinitely via symmetries about the endpoints). Both descriptions can also naturally be extended to the setting of pseudo-Riemannian manifolds. From the point of view of Lie theory, a symmetric space is the quotient G/H of a connected Lie group G by a Lie subgroup H which is (a connected component of) the invariant group of an involution of G. This definition includes more than the Riemannian definition, and reduces to it when H is compact. Riemannian symmetric spaces arise in a wide variety of situations in both mathematics and physics. Their central role in the theory of holonomy was discovered by Marcel Berger. They are important objects of study in representation theory and harmonic analysis as well as in differential geometry. Let M be a connected Riemannian manifold and p a point of M. A diffeomorphism f of a neighborhood of p is said to be a geodesic symmetry if it fixes the point p and reverses geodesics through that point, i.e. if γ is a geodesic with then It follows that the derivative of the map f at p is minus the identity map on the tangent space of p.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.