In computer science, a semaphore is a variable or abstract data type used to control access to a common resource by multiple threads and avoid critical section problems in a concurrent system such as a multitasking operating system. Semaphores are a type of synchronization primitive. A trivial semaphore is a plain variable that is changed (for example, incremented or decremented, or toggled) depending on programmer-defined conditions. A useful way to think of a semaphore as used in a real-world system is as a record of how many units of a particular resource are available, coupled with operations to adjust that record safely (i.e., to avoid race conditions) as units are acquired or become free, and, if necessary, wait until a unit of the resource becomes available. Semaphores are a useful tool in the prevention of race conditions; however, their use is not a guarantee that a program is free from these problems. Semaphores which allow an arbitrary resource count are called counting semaphores, while semaphores which are restricted to the values 0 and 1 (or locked/unlocked, unavailable/available) are called binary semaphores and are used to implement locks. The semaphore concept was invented by Dutch computer scientist Edsger Dijkstra in 1962 or 1963, when Dijkstra and his team were developing an operating system for the Electrologica X8. That system eventually became known as THE multiprogramming system. Suppose a physical library has 10 identical study rooms, to be used by one student at a time. Students must request a room from the front desk if they wish to use a study room. If no rooms are free, students wait at the desk until someone relinquishes a room. When a student has finished using a room, the student must return to the desk and indicate that one room has become free. In the simplest implementation, the clerk at the front desk knows only the number of free rooms available, which they only know correctly if all of the students actually use their room while they have signed up for them and return them when they're done.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related courses (6)
CS-206: Parallelism and concurrency
Course no longer offered for new students; this edition is only a make-up course for those who repeated the year. Please log in with EPFL credentials and consult the mediaspace link below for course v
CS-307: Introduction to multiprocessor architecture
Multiprocessors are a core component in all types of computing infrastructure, from phones to datacenters. This course will build on the prerequisites of processor design and concurrency to introduce
CS-476: Embedded system design
Hardware-software co-design is a well known concept in embedded system design.It is also a concept required in designing FPGA-accelerators in data-centers.This course teaches how to transform algorith
Show more