In mathematics, a unit vector in a normed vector space is a vector (often a spatial vector) of length 1. A unit vector is often denoted by a lowercase letter with a circumflex, or "hat", as in (pronounced "v-hat"). The term direction vector, commonly denoted as d, is used to describe a unit vector being used to represent spatial direction and relative direction. 2D spatial directions are numerically equivalent to points on the unit circle and spatial directions in 3D are equivalent to a point on the unit sphere. The normalized vector û of a non-zero vector u is the unit vector in the direction of u, i.e., where ‖u‖ is the norm (or length) of u. The term normalized vector is sometimes used as a synonym for unit vector. Unit vectors are often chosen to form the basis of a vector space, and every vector in the space may be written as a linear combination of unit vectors. Standard basis Unit vectors may be used to represent the axes of a Cartesian coordinate system. For instance, the standard unit vectors in the direction of the x, y, and z axes of a three dimensional Cartesian coordinate system are They form a set of mutually orthogonal unit vectors, typically referred to as a standard basis in linear algebra. They are often denoted using common vector notation (e.g., i or ) rather than standard unit vector notation (e.g., ). In most contexts it can be assumed that i, j, and k, (or and ) are versors of a 3-D Cartesian coordinate system. The notations , , , or , with or without hat, are also used, particularly in contexts where i, j, k might lead to confusion with another quantity (for instance with index symbols such as i, j, k, which are used to identify an element of a set or array or sequence of variables). When a unit vector in space is expressed in Cartesian notation as a linear combination of i, j, k, its three scalar components can be referred to as direction cosines. The value of each component is equal to the cosine of the angle formed by the unit vector with the respective basis vector.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related courses (32)
MATH-111(e): Linear Algebra
L'objectif du cours est d'introduire les notions de base de l'algèbre linéaire et ses applications.
PHYS-100: Advanced physics I (mechanics)
La Physique Générale I (avancée) couvre la mécanique du point et du solide indéformable. Apprendre la mécanique, c'est apprendre à mettre sous forme mathématique un phénomène physique, en modélisant l
PHYS-101(a): General physics : mechanics
Le but du cours de physique générale est de donner à l'étudiant les notions de base nécessaires à la compréhension des phénomènes physiques. L'objectif est atteint lorsque l'étudiant est capable de pr
Show more

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.