Summary
In mathematics, a norm is a function from a real or complex vector space to the non-negative real numbers that behaves in certain ways like the distance from the origin: it commutes with scaling, obeys a form of the triangle inequality, and is zero only at the origin. In particular, the Euclidean distance in a Euclidean space is defined by a norm on the associated Euclidean vector space, called the Euclidean norm, the 2-norm, or, sometimes, the magnitude of the vector. This norm can be defined as the square root of the inner product of a vector with itself. A seminorm satisfies the first two properties of a norm, but may be zero for vectors other than the origin. A vector space with a specified norm is called a normed vector space. In a similar manner, a vector space with a seminorm is called a seminormed vector space. The term pseudonorm has been used for several related meanings. It may be a synonym of "seminorm". A pseudonorm may satisfy the same axioms as a norm, with the equality replaced by an inequality "" in the homogeneity axiom. It can also refer to a norm that can take infinite values, or to certain functions parametrised by a directed set. Given a vector space over a subfield of the complex numbers a norm on is a real-valued function with the following properties, where denotes the usual absolute value of a scalar : Subadditivity/Triangle inequality: for all Absolute homogeneity: for all and all scalars Positive definiteness/positiveness/: for all if then Because property (2.) implies some authors replace property (3.) with the equivalent condition: for every if and only if A seminorm on is a function that has properties (1.) and (2.) so that in particular, every norm is also a seminorm (and thus also a sublinear functional). However, there exist seminorms that are not norms. Properties (1.) and (2.) imply that if is a norm (or more generally, a seminorm) then and that also has the following property: Non-negativity: for all Some authors include non-negativity as part of the definition of "norm", although this is not necessary.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.