Homotopy category of chain complexesIn homological algebra in mathematics, the homotopy category K(A) of chain complexes in an A is a framework for working with chain homotopies and homotopy equivalences. It lies intermediate between the category of chain complexes Kom(A) of A and the D(A) of A when A is ; unlike the former it is a , and unlike the latter its formation does not require that A is abelian. Philosophically, while D(A) turns into isomorphisms any maps of complexes that are quasi-isomorphisms in Kom(A), K(A) does so only for those that are quasi-isomorphisms for a "good reason", namely actually having an inverse up to homotopy equivalence.
Mapping cone (homological algebra)In homological algebra, the mapping cone is a construction on a map of chain complexes inspired by the analogous construction in topology. In the theory of triangulated categories it is a kind of combined and cokernel: if the chain complexes take their terms in an , so that we can talk about cohomology, then the cone of a map f being acyclic means that the map is a quasi-isomorphism; if we pass to the of complexes, this means that f is an isomorphism there, which recalls the familiar property of maps of groups, modules over a ring, or elements of an arbitrary abelian category that if the kernel and cokernel both vanish, then the map is an isomorphism.
Spectrum (topology)In algebraic topology, a branch of mathematics, a spectrum is an object representing a generalized cohomology theory. Every such cohomology theory is representable, as follows from Brown's representability theorem. This means that, given a cohomology theory,there exist spaces such that evaluating the cohomology theory in degree on a space is equivalent to computing the homotopy classes of maps to the space , that is.Note there are several different of spectra leading to many technical difficulties, but they all determine the same , known as the stable homotopy category.
D-moduleIn mathematics, a D-module is a module over a ring D of differential operators. The major interest of such D-modules is as an approach to the theory of linear partial differential equations. Since around 1970, D-module theory has been built up, mainly as a response to the ideas of Mikio Sato on algebraic analysis, and expanding on the work of Sato and Joseph Bernstein on the Bernstein–Sato polynomial. Early major results were the Kashiwara constructibility theorem and Kashiwara index theorem of Masaki Kashiwara.
Perverse sheafThe mathematical term perverse sheaves refers to a certain associated to a topological space X, which may be a real or complex manifold, or a more general topologically stratified space, usually singular. This concept was introduced in the thesis of Zoghman Mebkhout, gaining more popularity after the (independent) work of Joseph Bernstein, Alexander Beilinson, and Pierre Deligne (1982) as a formalisation of the Riemann-Hilbert correspondence, which related the topology of singular spaces (intersection homology of Mark Goresky and Robert MacPherson) and the algebraic theory of differential equations (microlocal calculus and holonomic D-modules of Joseph Bernstein, Masaki Kashiwara and Takahiro Kawai).
Verdier dualityIn mathematics, Verdier duality is a cohomological duality in algebraic topology that generalizes Poincaré duality for manifolds. Verdier duality was introduced in 1965 by as an analog for locally compact topological spaces of Alexander Grothendieck's theory of Poincaré duality in étale cohomology for schemes in algebraic geometry. It is thus (together with the said étale theory and for example Grothendieck's coherent duality) one instance of Grothendieck's six operations formalism.
Algebraic K-theoryAlgebraic K-theory is a subject area in mathematics with connections to geometry, topology, ring theory, and number theory. Geometric, algebraic, and arithmetic objects are assigned objects called K-groups. These are groups in the sense of abstract algebra. They contain detailed information about the original object but are notoriously difficult to compute; for example, an important outstanding problem is to compute the K-groups of the integers.
T-structureIn the branch of mathematics called homological algebra, a t-structure is a way to axiomatize the properties of an of a . A t-structure on consists of two subcategories of a or stable which abstract the idea of complexes whose cohomology vanishes in positive, respectively negative, degrees. There can be many distinct t-structures on the same category, and the interplay between these structures has implications for algebra and geometry. The notion of a t-structure arose in the work of Beilinson, Bernstein, Deligne, and Gabber on perverse sheaves.
Derived categoryIn mathematics, the derived category D(A) of an A is a construction of homological algebra introduced to refine and in a certain sense to simplify the theory of derived functors defined on A. The construction proceeds on the basis that the of D(A) should be chain complexes in A, with two such chain complexes considered isomorphic when there is a chain map that induces an isomorphism on the level of homology of the chain complexes. Derived functors can then be defined for chain complexes, refining the concept of hypercohomology.
Homotopy categoryIn mathematics, the homotopy category is a built from the category of topological spaces which in a sense identifies two spaces that have the same shape. The phrase is in fact used for two different (but related) categories, as discussed below. More generally, instead of starting with the category of topological spaces, one may start with any and define its associated homotopy category, with a construction introduced by Quillen in 1967. In this way, homotopy theory can be applied to many other categories in geometry and algebra.