**Are you an EPFL student looking for a semester project?**

Work with us on data science and visualisation projects, and deploy your project as an app on top of GraphSearch.

Concept# Homotopy category

Summary

In mathematics, the homotopy category is a built from the category of topological spaces which in a sense identifies two spaces that have the same shape. The phrase is in fact used for two different (but related) categories, as discussed below.
More generally, instead of starting with the category of topological spaces, one may start with any and define its associated homotopy category, with a construction introduced by Quillen in 1967. In this way, homotopy theory can be applied to many other categories in geometry and algebra.
The naive homotopy category
The Top has objects the topological spaces and morphisms the continuous maps between them. The older definition of the homotopy category hTop, called the naive homotopy category for clarity in this article, has the same objects, and a morphism is a homotopy class of continuous maps. That is, two continuous maps f: X → Y are considered the same in the naive homotopy category if one can be continuously deformed to the o

Official source

This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Related publications

Loading

Related people

Loading

Related units

Loading

Related concepts

Loading

Related courses

Loading

Related lectures

Loading

Related publications (2)

Related people

No results

Loading

Loading

Kan spectra provide a combinatorial model for the stable homotopy category. They were introduced by Dan Kan in 1963 under the name semisimplicial spectra. A Kan spectrum is similar to a pointed simplicial set, but it has simplices in negative degrees as well and all its simplices have infinitely many faces and degeneracies. In the first part of this thesis, we define a functor from the category of Gamma-spaces to the category of Kan spectra without passing through any other category of spectra. We show that the resulting Kan spectrum of a Gamma-space A agrees with the usual object associated to A in the stable homotopy category by comparing it to Bousfield-Friedlander's spectrum construction. In particular, applying our construction to the Gamma-space associated to a symmetric monoidal category provides a combinatorial model of its algebraic K-theory spectrum. For the Gamma-space associated to an abelian group, this yields via the stable Dold-Kan correspondence the unbounded chain complex with the abelian group concentrated in degree zero. The second part of this work concerns group spectra and twisting structures. Group spectra are the group objects in the category of Kan spectra. They provide an algebraic, combinatorial model for the stable homotopy category. We transfer Brown's model structure from the category of Kan spectra to a Quillen equivalent model structure on the category of group spectra. We then construct the analogues of Kan's loop group functor and its right adjoint Wbar together with corresponding classifying bundles, so that the category of Kan spectra becomes a twisted homotopical category in the sense of Farjoun and Hess.

Related units

No results

Related concepts (15)

Model category

In mathematics, particularly in homotopy theory, a model category is a with distinguished classes of morphisms ('arrows') called 'weak equivalences', 'fibrations' and 'cofibrations' satisfying certa

Category of topological spaces

In mathematics, the category of topological spaces, often denoted Top, is the whose s are topological spaces and whose morphisms are continuous maps. This is a category because the composition of tw

Cohomology

In mathematics, specifically in homology theory and algebraic topology, cohomology is a general term for a sequence of abelian groups, usually one associated with a topological space, often defined f

In homological algebra, to understand commutative rings R, one studies R-modules, chain complexes of R-modules and their monoids, the differential graded R-algebras. The category of R-modules has a rich structure, but too rigid to efficiently work with homological invariants and homotopy invariant properties. It appears more appropriate to operate in the derived category D(R), which is the homotopy category of differential graded R-modules. Algebra of symmetric spectra offers a generalization of homological algebra. In this frame, spectra are objects that take the place of abelian groups; in particular, the analogue of the initial ring Z is the sphere spectrum S. Tensoring over S endows the category of spectra with a symmetric monoidal smash product, analogous to the tensor product of abelian groups. Thus, spectra are S-modules, and ring spectra, which extend the notion of rings, are the S-algebras. To any discrete ring R, one can associate the Eilenberg-Mac Lane ring spectrum HR, which is commutative if R is.

2010Related courses (2)

This course will provide an introduction to model category theory, which is an abstract framework for generalizing homotopy theory beyond topological spaces and continuous maps. We will study numerous examples of model categories and their applications in algebra and topology.

Homology is one of the most important tools to study topological spaces and it plays an important role in many fields of mathematics. The aim of this course is to introduce this notion, understand its properties and learn how to compute it. There will be many examples and applications.

Related lectures (8)