Fizeau experimentThe Fizeau experiment was carried out by Hippolyte Fizeau in 1851 to measure the relative speeds of light in moving water. Fizeau used a special interferometer arrangement to measure the effect of movement of a medium upon the speed of light. According to the theories prevailing at the time, light traveling through a moving medium would be dragged along by the medium, so that the measured speed of the light would be a simple sum of its speed through the medium plus the speed of the medium.
Sagnac effectThe Sagnac effect, also called Sagnac interference, named after French physicist Georges Sagnac, is a phenomenon encountered in interferometry that is elicited by rotation. The Sagnac effect manifests itself in a setup called a ring interferometer or Sagnac interferometer. A beam of light is split and the two beams are made to follow the same path but in opposite directions. On return to the point of entry the two light beams are allowed to exit the ring and undergo interference.
Lorentz ether theoryWhat is now often called Lorentz ether theory (LET) has its roots in Hendrik Lorentz's "theory of electrons", which marked the end of the development of the classical aether theories at the end of the 19th and at the beginning of the 20th century. Lorentz's initial theory was created between 1892 and 1895 and was based on removing assumptions about aether motion. It explained the failure of the negative aether drift experiments to first order in v/c by introducing an auxiliary variable called "local time" for connecting systems at rest and in motion in the aether.
Tests of special relativitySpecial relativity is a physical theory that plays a fundamental role in the description of all physical phenomena, as long as gravitation is not significant. Many experiments played (and still play) an important role in its development and justification. The strength of the theory lies in its unique ability to correctly predict to high precision the outcome of an extremely diverse range of experiments. Repeats of many of those experiments are still being conducted with steadily increased precision, with modern experiments focusing on effects such as at the Planck scale and in the neutrino sector.
History of special relativityThe history of special relativity consists of many theoretical results and empirical findings obtained by Albert A. Michelson, Hendrik Lorentz, Henri Poincaré and others. It culminated in the theory of special relativity proposed by Albert Einstein and subsequent work of Max Planck, Hermann Minkowski and others. Although Isaac Newton based his physics on absolute time and space, he also adhered to the principle of relativity of Galileo Galilei restating it precisely for mechanical systems.
Velocity-addition formulaIn relativistic physics, a velocity-addition formula is an equation that specifies how to combine the velocities of objects in a way that is consistent with the requirement that no object's speed can exceed the speed of light. Such formulas apply to successive Lorentz transformations, so they also relate different frames. Accompanying velocity addition is a kinematic effect known as Thomas precession, whereby successive non-collinear Lorentz boosts become equivalent to the composition of a rotation of the coordinate system and a boost.
Common-path interferometerA common-path interferometer is a class of interferometers in which the reference beam and sample beams travel along the same path. Examples include the Sagnac interferometer, Zernike phase-contrast interferometer, and the point diffraction interferometer. A common-path interferometer is generally more robust to environmental vibrations than a "double-path interferometer" such as the Michelson interferometer or the Mach–Zehnder interferometer.
Hammar experimentThe Hammar experiment was an experiment designed and conducted by Gustaf Wilhelm Hammar (1935) to test the aether drag hypothesis. Its negative result refuted some specific aether drag models, and confirmed special relativity. Experiments such as the Michelson–Morley experiment of 1887 (and later other experiments such as the Trouton–Noble experiment in 1903 or the Trouton–Rankine experiment in 1908), presented evidence against the theory of a medium for light propagation known as the luminiferous aether; a theory that had been an established part of science for nearly one hundred years at the time.
Aether theoriesIn physics, aether theories (also known as ether theories) propose the existence of a medium, a space-filling substance or field as a transmission medium for the propagation of electromagnetic or gravitational forces. "Since the development of special relativity, theories using a substantial aether fell out of use in modern physics, and are now replaced by more abstract models." This early modern aether has little in common with the aether of classical elements from which the name was borrowed.
Luminiferous aetherLuminiferous aether or ether ("luminiferous", meaning "light-bearing") was the postulated medium for the propagation of light. It was invoked to explain the ability of the apparently wave-based light to propagate through empty space (a vacuum), something that waves should not be able to do. The assumption of a spatial plenum (space completely filled with matter) of luminiferous aether, rather than a spatial vacuum, provided the theoretical medium that was required by wave theories of light.