A three-center two-electron (3c–2e) bond is an electron-deficient chemical bond where three atoms share two electrons. The combination of three atomic orbitals form three molecular orbitals: one bonding, one non-bonding, and one anti-bonding. The two electrons go into the bonding orbital, resulting in a net bonding effect and constituting a chemical bond among all three atoms. In many common bonds of this type, the bonding orbital is shifted towards two of the three atoms instead of being spread equally among all three. Example molecules with 3c–2e bonds are the trihydrogen cation (H3+) and diborane (B2H6). In these two structures, the three atoms in each 3c-2e bond form an angular geometry, leading to a bent bond. An extended version of the 3c–2e bond model features heavily in cluster compounds described by the polyhedral skeletal electron pair theory, such as boranes and carboranes. These molecules derive their stability from having a completely filled set of bonding molecular orbitals as outlined by Wade's rules. The monomer BH3 is unstable since the boron atom has an empty p-orbital. A B−H−B 3-center-2-electron bond is formed when a boron atom shares electrons with a B−H bond on another boron atom. The two electrons (corresponding to one bond) in a B−H−B bonding molecular orbital are spread out across three internuclear spaces. In diborane (B2H6), there are two such 3c-2e bonds: two H atoms bridge the two B atoms, leaving two additional H atoms in ordinary B−H bonds on each B. As a result, the molecule achieves stability since each B participates in a total of four bonds and all bonding molecular orbitals are filled, although two of the four bonds are 3-center B−H−B bonds. The reported bond order for each B−H interaction in a bridge is 0.5, so that the bridging B−H−B bonds are weaker and longer than the terminal B−H bonds, as shown by the bond lengths in the structural diagram. Three-center, two-electron bonding is pervasive in organotransition metal chemistry. A celebrated family of compounds featuring such interactions as called agostic complexes.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.