Related concepts (5)
Pseudoscalar meson
In high-energy physics, a pseudoscalar meson is a meson with total spin 0 and odd parity (usually notated as J^P = 0^− ). Pseudoscalar mesons are commonly seen in proton-proton scattering and proton-antiproton annihilation, and include the pion (π), kaon (K), eta (η), and eta prime () particles, whose masses are known with great precision. Among all of the mesons known to exist, in some sense, the pseudoscalars are the most well studied and understood.
Vector meson
In high energy physics, a vector meson is a meson with total spin 1 and odd parity (usually noted as JP = 1−). Vector mesons have been seen in experiments since the 1960s, and are well known for their spectroscopic pattern of masses. The vector mesons contrast with the pseudovector mesons, which also have a total spin 1 but instead have even parity. The vector and pseudovector mesons are also dissimilar in that the spectroscopy of vector mesons tends to show nearly pure states of constituent quark flavors, whereas pseudovector mesons and scalar mesons tend to be expressed as composites of mixed states.
Pseudovector meson
In high energy physics, a pseudovector meson or axial vector meson is a meson with total spin 1 and even parity (+) (usually noted as J^ P = 1^+ ). Compare to a vector meson, which has a total spin 1 and odd parity (that is, J^ P = 1^− ). The known pseudovector mesons fall into two different classes, all have even spatial parity ( P = "+" ), but they differ in another kind of parity called charge parity (C) which can be either even (+) or odd (−).
Chiral symmetry breaking
In particle physics, chiral symmetry breaking is the spontaneous symmetry breaking of a chiral symmetry – usually by a gauge theory such as quantum chromodynamics, the quantum field theory of the strong interaction. Yoichiro Nambu was awarded the 2008 Nobel prize in physics for describing this phenomenon ("for the discovery of the mechanism of spontaneous broken symmetry in subatomic physics").
Meson
In particle physics, a meson (ˈmiːzɒn,_ˈmɛzɒn) is a type of hadronic subatomic particle composed of an equal number of quarks and antiquarks, usually one of each, bound together by the strong interaction. Because mesons are composed of quark subparticles, they have a meaningful physical size, a diameter of roughly one femtometre (10^−15 m), which is about 0.6 times the size of a proton or neutron. All mesons are unstable, with the longest-lived lasting for only a few tenths of a nanosecond.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.