Bioenergy is energy made or generated from biomass, which consists of recently living (but now dead) organisms, mainly plants. Types of biomass commonly used for bioenergy include wood, food crops such as corn, energy crops and waste from forests, yards, or farms. The IPCC (Intergovernmental Panel on Climate Change) defines bioenergy as a renewable form of energy. Bioenergy can either mitigate (i.e. reduce) or increase greenhouse gas emissions. There is also agreement that local environmental impacts can be problematic.
Biofuel#Terminology
Since biomass can be used as a fuel directly (e.g. wood logs), the terms biomass and biofuel have sometimes been used interchangeably. However, the word biomass usually denotes the biological raw material the fuel is made of. The terms biofuel or biogas are generally reserved for liquid or gaseous fuels respectively.
Biomass (energy)Wood and wood residues is the largest biomass energy source today. Wood can be used as a fuel directly or processed into pellet fuel or other forms of fuels. Other plants can also be used as fuel, for instance maize, switchgrass, miscanthus and bamboo. The main waste feedstocks are wood waste, agricultural waste, municipal solid waste, and manufacturing waste. Upgrading raw biomass to higher grade fuels can be achieved by different methods, broadly classified as thermal, chemical, or biochemical:
Thermal conversion processes use heat as the dominant mechanism to upgrade biomass into a better and more practical fuel. The basic alternatives are torrefaction, pyrolysis, and gasification, these are separated mainly by the extent to which the chemical reactions involved are allowed to proceed (mainly controlled by the availability of oxygen and conversion temperature).
Many chemical conversions are based on established coal-based processes, such as the Fischer-Tropsch synthesis. Like coal, biomass can be converted into multiple commodity chemicals.
Biochemical processes have developed in nature to break down the molecules of which biomass is composed, and many of these can be harnessed.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
The learning outcomes are to get to know the biomass ressources and its characteristics; study of biomass conversion pathways and study of process flow-sheets; establish the flow diagram of an industr
The book "Solid Waste Engineering - A Global Perspective" is the basis for this course. This textbook is an excellent introduction to the field of Solid Waste Engineering and gives insight into releva
This course will provide a toolkit to students to understand and analyze sustainable energy systems. In addition, the main sustainable energy technologies will be introduced and their governing princi
A biorefinery is a refinery that converts biomass to energy and other beneficial byproducts (such as chemicals). The International Energy Agency Bioenergy Task 42 defined biorefining as "the sustainable processing of biomass into a spectrum of bio-based products (food, feed, chemicals, materials) and bioenergy (biofuels, power and/or heat)". As refineries, biorefineries can provide multiple chemicals by fractioning an initial raw material (biomass) into multiple intermediates (carbohydrates, proteins, triglycerides) that can be further converted into value-added products.
Climate change mitigation is action to limit climate change by reducing emissions of greenhouse gases or removing those gases from the atmosphere. The recent rise in global average temperature is mostly due to emissions from burning fossil fuels such as coal, oil, and natural gas. Mitigation can reduce emissions by transitioning to sustainable energy sources, conserving energy, and increasing efficiency. It is possible to remove carbon dioxide () from the atmosphere by enlarging forests, restoring wetlands and using other natural and technical processes.
Carbon dioxide removal (CDR), also known as carbon removal, greenhouse gas removal (GGR) or negative emissions, is a process in which carbon dioxide gas () is removed from the atmosphere by deliberate human activities and durably stored in geological, terrestrial, or ocean reservoirs, or in products. In the context of net zero greenhouse gas emissions targets, CDR is increasingly integrated into climate policy, as an element of climate change mitigation strategies.
Organic solvents are ubiquitous in industrial and domestic applications from the production of pharmaceuticals to household consumer products. The negative impact of most traditional solvents, especially aprotic types, on the environment, health, and safet ...
Catalytic hydrodeoxygenation is of prime importance in the valorization of biomass-based feedstocks to produce essential chemicals and fuels. To carry out this process in a more cost-effective and sustainable manner, the use of 3D-metal-based nanostructure ...
Washington2023
, ,
Biomass is a highly versatile renewable resource for decarbonizing energy systems. Gasification is a promising conversion technology that can transform biomass into multiple energy carriers to produce heat, electricity, biofuels, or chemicals. At present, ...