Are you an EPFL student looking for a semester project?
Work with us on data science and visualisation projects, and deploy your project as an app on top of Graph Search.
Polymer stabilizers (British: polymer stabilisers) are chemical additives which may be added to polymeric materials, such as plastics and rubbers, to inhibit or retard their degradation. Common polymer degradation processes include oxidation, UV-damage, thermal degradation, ozonolysis, combinations thereof such as photo-oxidation, as well as reactions with catalyst residues, dyes, or impurities. All of these degrade the polymer at a chemical level, via chain scission, uncontrolled recombination and cross-linking, which adversely affects many key properties such as strength, malleability, appearance and colour. Stabilizers are used at all stages of the polymer life-cycle. They allow plastic items to be produced faster and with fewer defects, extend their useful lifespan, and facilitate their recycling. However they also continue to stabilise waste plastic, causing it to remain in the environment for longer. Many different types of plastic exist and each may be vulnerable to several types of degradation, which usually results in several different stabilisers being used in combination. Even for objects made from the same type of plastic, different applications may have different stabilisation requirements. Regulatory considerations, such as food contact approval are also present. A wide range of stabilizers is therefore needed. The market for antioxidant stabilisers was estimated at US5.5 billion by 2025. Antioxidants inhibit autoxidation that occurs when polymers reacts with atmospheric oxygen. Aerobic degradation occurs gradually at room temperature, but almost all polymers are at risk of thermal-oxidation when they are processed at high temperatures. The molding or casting of plastics (e.g. injection molding) require them to be above their melting point or glass transition temperature (~200-300 °C). Under these conditions reactions with oxygen occur much more rapidly. Once initiated, autoxidation can be autocatalytic.
Hubert Girault, Andreas Stephan Lesch, Gregorio Bonazza
Véronique Michaud, Valentin Rougier