In electromagnetism, the Lorenz gauge condition or Lorenz gauge, for Ludvig Lorenz, is a partial gauge fixing of the electromagnetic vector potential by requiring The name is frequently confused with Hendrik Lorentz, who has given his name to many concepts in this field. The condition is Lorentz invariant. The Lorenz gauge condition does not completely determine the gauge: one can still make a gauge transformation where is the four-gradient and is any harmonic scalar function: that is, a scalar function obeying the equation of a massless scalar field).
The Lorenz gauge condition is used to eliminate the redundant spin-0 component in Maxwell's equations when these are used to describe a massless spin-1 quantum field. It is also used for massive spin-1 fields where the concept of gauge transformations does not apply at all.
In electromagnetism, the Lorenz condition is generally used in calculations of time-dependent electromagnetic fields through retarded potentials. The condition is
where is the four-potential, the comma denotes a partial differentiation and the repeated index indicates that the Einstein summation convention is being used. The condition has the advantage of being Lorentz invariant. It still leaves substantial gauge degrees of freedom.
In ordinary vector notation and SI units, the condition is
where is the magnetic vector potential and is the electric potential; see also gauge fixing.
In Gaussian units the condition is
A quick justification of the Lorenz gauge can be found using Maxwell's equations and the relation between the magnetic vector potential and the magnetic field:
Therefore,
Since the curl is zero, that means there is a scalar function such that
This gives a well known equation for the electric field:
This result can be plugged into the Ampère–Maxwell equation,
This leaves
To have Lorentz invariance, the time derivatives and spatial derivatives must be treated equally (i.e. of the same order).
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
In physics, a gauge theory is a field theory in which the Lagrangian is invariant under local transformations according to certain smooth families of operations (Lie groups). The term gauge refers to any specific mathematical formalism to regulate redundant degrees of freedom in the Lagrangian of a physical system. The transformations between possible gauges, called gauge transformations, form a Lie group—referred to as the symmetry group or the gauge group of the theory. Associated with any Lie group is the Lie algebra of group generators.
In the physics of gauge theories, gauge fixing (also called choosing a gauge) denotes a mathematical procedure for coping with redundant degrees of freedom in field variables. By definition, a gauge theory represents each physically distinct configuration of the system as an equivalence class of detailed local field configurations. Any two detailed configurations in the same equivalence class are related by a gauge transformation, equivalent to a shear along unphysical axes in configuration space.
The electromagnetic wave equation is a second-order partial differential equation that describes the propagation of electromagnetic waves through a medium or in a vacuum. It is a three-dimensional form of the wave equation. The homogeneous form of the equation, written in terms of either the electric field E or the magnetic field B, takes the form: where is the speed of light (i.e. phase velocity) in a medium with permeability μ, and permittivity ε, and ∇2 is the Laplace operator.
Ce cours traite de l'électromagnétisme dans le vide et dans les milieux continus. A partir des principes fondamentaux de l'électromagnétisme, on établit les méthodes de résolution des équations de Max
In the framework of mixed Higgs-Starobinsky inflation, we consider the generation of Abelian gauge fields due to their nonminimal coupling to gravity (in two different formulations of gravity-metric and Palatini). We couple the gauge-field invariants F mu ...
The hunt for exotic quantum phase transitions described by emergent fractionalized de-grees of freedom coupled to gauge fields requires a precise determination of the fixed point structure from the field theoretical side, and an extreme sensitivity to weak ...
In [1], logarithmic correction to subleading soft photon and soft graviton theorems have been derived in four spacetime dimensions from the ratio of IR-finite S-matrices. This has been achieved after factoring out IR-divergent components from the tradition ...