Concept

Partially ordered group

Summary
In abstract algebra, a partially ordered group is a group (G, +) equipped with a partial order "≤" that is translation-invariant; in other words, "≤" has the property that, for all a, b, and g in G, if a ≤ b then a + g ≤ b + g and g + a ≤ g + b. An element x of G is called positive if 0 ≤ x. The set of elements 0 ≤ x is often denoted with G+, and is called the positive cone of G. By translation invariance, we have a ≤ b if and only if 0 ≤ -a + b. So we can reduce the partial order to a monadic property: if and only if For the general group G, the existence of a positive cone specifies an order on G. A group G is a partially orderable group if and only if there exists a subset H (which is G+) of G such that: 0 ∈ H if a ∈ H and b ∈ H then a + b ∈ H if a ∈ H then -x + a + x ∈ H for each x of G if a ∈ H and -a ∈ H then a = 0 A partially ordered group G with positive cone G+ is said to be unperforated if n · g ∈ G+ for some positive integer n implies g ∈ G+. Being unperforated means there is no "gap" in the positive cone G+. If the order on the group is a linear order, then it is said to be a linearly ordered group. If the order on the group is a lattice order, i.e. any two elements have a least upper bound, then it is a lattice-ordered group (shortly l-group, though usually typeset with a script l: l-group). A Riesz group is an unperforated partially ordered group with a property slightly weaker than being a lattice-ordered group. Namely, a Riesz group satisfies the Riesz interpolation property: if x1, x2, y1, y2 are elements of G and xi ≤ yj, then there exists z ∈ G such that xi ≤ z ≤ yj. If G and H are two partially ordered groups, a map from G to H is a morphism of partially ordered groups if it is both a group homomorphism and a monotonic function. The partially ordered groups, together with this notion of morphism, form a . Partially ordered groups are used in the definition of valuations of fields.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.